[1] Hou XM, Chen X, Wang YL. The role of in regulation of kidney development and kidney disease[J]. Hereditas, 2011, 33(9):931-938. (in Chinese)
侯晓明,陈星,王玉林. Pax2在肾脏发育和肾疾病中的调控作用[J]. 遗传, 2011, 33(9): 931-938.
[2] Fotaki V, Price DJ, Mason JO. Newly identified patterns of Pax2 expression in the developing mouse forebrain[J]. BMC Dev Biol,2008, 8: 79.
[3] Torres M, Gomez-Pardo E, Dressler GR, et al. Pax-2 controls multiple steps of urogenital development[J]. Development,1995, 121 (12): 4057-4065.
[4] Namm A, Arend A, Aunapuu M. Expression of Pax2 protein during the formation of the central nervous system in human embryos[J]. Folia Morphol (Warsz),2014, 73 (3): 272-278.
[5] Miyazawa T, Nakano M, Takemura Y, et al. A case of renal-coloboma syndrome associated with mental developmental delay exhibiting a novel PAX2 gene mutation[J]. Clin Nephrol,2009, 72 (6): 497-500.
[6] Wefers AK, Haberlandt C, Surchev L, et al. Migration of interneuron precursors in the nascent cerebellar cortex[J]. Cerebellum,2018, 17 (1): 62-71.
[7] Fauquier T, Romero E, Picou F, et al. Severe impairment of cerebellum development in mice expressing a dominant-negative mutation inactivating thyroid hormone receptor alpha1 isoform[J]. Dev Biol,2011, 356 (2): 350-358.
[8] Fallahi-Sichani M, Soleimani M, Najafi SM, et al. In vitro differentiation of cord blood unrestricted somatic stem cells expressing dopamine-associated genes into neuronlike cells[J]. Cell Biol Int,2007, 31 (3): 299-303.
[9] Nornes HO, Dressler GR, Knapik EW, et al. Spatially and temporally restricted expression of Pax2 during marine neurogenesis[J]. Development,1990, 109 (4): 797-809.
[10] Chandrasegaran S, Carroll D. Origins of programmable nucleases for genome engineering[J]. J Mol Biol,2016, 428 (5 Pt B): 963-989.
[11] Pattanayak Ⅴ, Ramirez CL, Joung JK, et al. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection[J]. Nat Methods,2011, 8 (9): 765-770.
[12] Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science,2013, 339 (6121): 819-823.
[13] Hussain W, Mahmood T, Hussain J, et al. CRISPR/Cas system: a game changing genome editing technology, to treat human genetic diseases[J]. Gene,2019, 685:70-75.
[14] Jinek M, Chylinski K, Fonfara Ⅰ, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science,2012, 337 (6096): 816-821.
[15] Zheng W, Gu F. Progress of application and off-target effects of CRISPR/Cas9[J]. Hereditas, 2015, 37(10): 1003-1010. (in Chinese)
郑武,谷峰.CRISPR/Cas9的应用及脱靶效应研究进展[J].遗传, 2015, (10): 1003-1010.
[16] Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nat Biotechnol,2013, 31 (9): 827-832.
[17] Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification[J]. Nat Biotechnol,2014, 32 (6): 577-582.
[18] Shen B, Zhang W, Zhang J, et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects[J]. Nat Methods,2014, 11 (4): 399-402.
[19] Li ZhY, Huang ChC, Sun XH, et al. Rat models of AR and IRS2 knockout genes were prepared using CRISPR/Cas9 technology[J]. Journal of Tropical Medicine, 2018, 18(9): 1143-1146. (in Chinese)
李忠义,黄垂灿,孙秀红,等. 利用CRISPR/Cas9技术制备敲除AR和IRS2基因大鼠[J]. 热带医学杂志, 2018, 18(9): 1143-1146.
|