[1] Liu Y, Chen Sh. Review of medical image segmentation method[J]. Electronic Science and Technology, 2017,(8):169-172. (in Chinese)
刘宇, 陈胜. 医学图像分割方法综述[J].电子科技,2017,(8):169-172.
[2] Pan YL, Lu Y. The application of computer aided diagnosis with artificial intelligence in medical imaging[J]. International Journal of Medical Radiology, 2019, 42(1):3-7. (in Chinese)
潘亚玲, 陆勇. 人工智能在医学影像CAD中的应用[J].国际医学放射学杂志,2019,42(1):3-7.
[3] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Trans Pattern Anal Mach Intell, 2017,39(4):640-651.
[4] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]. Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2015, 9351: 234-241.
[5] Rudra PK, Poudel, Pablo L, et al. Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation[C]. RAMBO 2016, HVSMR 2016: Reconstruction, Segmentation, and Analysis of Medical Images, 2017 10129: 83-94.
[6] Kingma DP, Ba J. Adam: a method for stochastic optimization[J]. 3rd International Conference for Learning Representations(ICLR), San Diego, 2015: 1-15.
[7] Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis[J]. Med Image Anal, 2017,42: 60-88.
[8] Gong JCh, Zhao ShY, Wang YJ. Research progress on deep learning-based medical image segmentation[J]. Chinese Journal of Medical Physics, 2019,36(4):420-424. (in Chinese)
宫进昌, 赵尚义, 王远军. 基于深度学习的医学图像分割研究进展[J].中国医学物理学杂志,2019,36(4):420-424.
[9] Guo W, Ju ZhJ, Wu QN, et al. Research progress of automatic organ image segmentation based on deep learning[J]. Chinese Medical Equipment Journal, 2020,41(1):85-94. (in Chinese)
郭雯, 鞠忠建, 吴青南, 等. 基于深度学习的器官自动分割研究进展[J].医疗卫生装备,2020,41(1):85-94.
[10] Noble JH, Warren FM, Labadie RF, et al. Automatic segmentation of the facial nerve and chorda tympani in CT images using spatially dependent feature values[J]. Med Phys, 2008,35(12):5375-5384.
[11] Reda FA, Noble JH, Rivas A, et al. Automatic segmentation of the facial nerve and chorda tympani in pediatric CT scans[J]. Med Phys, 2011,38(10):5590-5600.
[12] Noble JH, Labadie RF, Majdani O, et al. Automatic segmentation of intra-cochlear anatomy in conventional CT[J]. IEEE Trans Biomed Eng, 2011, 58(9): 2625-2632.
[13] Noble JH, Dawant BM, Warren FM, et al. Automatic identification and 3D rendering of temporal bone anatomy[J]. Otol Neurotol, 2009,30(4):436-442.
[14] Powell KA, Liang T, Hittle B, et al. Atlas-based segmentation of temporal bone anatomy[J]. Int J Comput Assist Radiol Surg, 2017,12(11):1937-1944.
[15] Milletari F, Navab N, Ahmadi S. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]. 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, 2016: 565-571.
[16] ?i?ek ?, Abdulkadir A, Soeren S, et al. 3D U-Net: Learning dense volumetric segmentation from sprse annotation[C]. Medical Image Computing and ComputerAssisted Intervention(MICCAI), 2016, 2016, 9901: 424-432.
[17] Fauser J, Stenin Ⅰ, Bauer M, et al. Toward an automatic preoperative pipeline for image-guided temporal bone surgery[J]. Int J Comput Assist Radiol Surg, 2019,14(6):967-976.
|