[1] Mozaffarian D, Benjamin EJ, Go AS, et al. Executive summary: heart disease and stroke statistics—2016 update: a report from the American Heart Association [J]. Circulation, 2016, 133(4):447-454.
[2] Liu CY, Peng ZF, Zhang N,et al. Identification of differentially expressed microRNAs and their PKC-isoform specific gene network prediction during hypoxic pre-conditioning and focal cerebral ischemia of mice[J]. J Neurochem, 2012, 120(120):830-841.
[3] Peng ZhF. Down-regulating of microrna-181b has protective effect on cerebral ischemic injury of mice[J]. Chinese Journal of Pathophysiology, 2015, 31 (2): 224-228. (in Chinese)
彭志锋. 下调 microRNA-181b 在小鼠缺血性脑损伤中的神经保护作用[J]. 中国病理生理杂志, 2015,31(2):224-228.
[4] Graham SH, Liu H. Life and death in the trash heap: the ubiquitin proteasome pathway and UCHL1 in brain aging, neurodegenerative disease and cerebral ischemia [J]. Ageing Res Rev, 2017, 34:30-38.
[5] Liu H, Povysheva N, Rose ME, et al. Role of UCHL1 in axonal injury and functional recovery after cerebral ischemia[J]. Proc Natl Acad Sci USA, 2019,116(10):4643-4650.
[6] Peng ZF, Li JF, Li Y, et al. Downregulation of miR-181b in mouse brain following ischemic stroke induces neuroprotection against ischemic injury through targeting heat shock protein A5 and ubiquitin carboxyl-terminal hydrolase isozyme L1[J]. J Neurosci Res, 2013, 91(10):1349-1362.
[7] Wei H, Li Y, Han S, et al. cPKCγ-modulated autophagy in neurons alleviates ischemic injury in brain of mice with ischemic stroke through Akt-mTOR pathway [J]. Transl Stroke Res, 2016, 7(6): 497-511.
[8] Peng ZhF, Wang XY, Yang JH. Knockdown of Atg5 aggravates cerebral ischemia andreperfusion injury in mice [J]. Chinese Journal of Pathophysiology, 2016, 32 (1): 64-68. (in Chinese)
彭志锋, 王喜英, 杨靖辉. 小鼠脑缺血时自噬相关基因5的抗损伤作用[J]. 中国病理生理杂志, 2016, 32(1):64-68.
[9] Mu ?oz A, Nakazaki M, Goodman JC, et al. Ischemic preconditioning in the hippocampus of knockout mouse lacking SUR1-based K(ATP) channels[J]. Stroke, 2003, 34(1):164-170.
[10]Jiang J, Yang WW, Zhang N, et al. Hypoxic precondationing attenuated MCAO-induced ischemic brain injuries of mice [J]. Basic and Clinical Medicine, 2009, 29 (2): 113-118. (in Chinese)
江君,杨巍巍,张楠,等. 低氧预适应减轻脑中动脉阻塞所致小鼠缺血性脑损伤[J]. 基础医学与临床, 2009, 29(2):113-118.
[11] Xu M, Zhang HL. Death and survival of neuronal and astrocytic cells in ischemic brain injury: a role of autophagy[J]. Acta Pharmacol Sin, 2011, 32(9): 1089-1099.
[12] Graham SH, Liu H. Life and death in the trash heap: the ubiquitin proteasome pathway and UCHL1 in brain aging, neurodegenerative disease and cerebral ischemia [J]. Ageing Res Rev, 2017, 34:30-38.
[13] Liu H, Li W, Rose ME, et al. The point mutation UCH-L1 C152A protects primary neurons against cyclopentenone prostaglandin-induced cytotoxicity: implications for post-ischemic neuronal injury[J]. Cell Death Dis, 2015, 6(11):e1966.
[14] Shen H, Sikorska M, Leblanc J, et al. Oxidative stress regulated expression of ubiquitin carboxyl-terminal hydrolase-l1: role in cell survival [J]. Apoptosis, 2006, 11(6):1049-1059.
[15] Liu H, Li W, Ahmad M, et al. Modification of ubiquitin-C-terminal hydrolase-L1 by cyclopentenone prostaglandins exacerbates hypoxic injury [J]. Neurobiol Dis, 2011, 41(2):318-328.
[16] Takami Y, Nakagami H, Morishita R, et al. Ubiquitin carboxyl-terminal hydrolase L1, a novel deubiquitinating enzyme in the vasculature, attenuates NF-B activation [J]. Arterioscler Thromb Vasc Biol, 2007, 27(10):2184-2190.
[17] Feng L, Xue YH, Xu ZhB, et al. Effects of NF-κB inhibitor on nerve injury in rats after intracerebral hemorrhage [J]. Chinese Journal of Pathophysiology, 2017, 33 (12): 2278-2282. (in Chinese)
冯路, 薛跃华, 徐正保, 等. NF-κB抑制剂对脑出血大鼠神经损伤的影响[J]. 中国病理生理杂志, 2017, 33(12):2278-2282.
[18] Weber B, Schaper C, Wang Y, et al. Interaction of the ubiquitin carboxyl terminal esterase L1 with α2-adrenergic receptors inhibits agonist-mediated p44/42 MAP kinase activation [J]. Cell Signal, 2009, 21(10):1513-1521.
|