[1] Tandel GS, Biswas M, Kakde OG, et al. A review on a deep learning perspective in brain cancer classification [J]. Cancers, 2019, 11(1): 111.
[2] Mitchell D, Kwon H, Kubica P, et al. Brain metastases: an update on multi-disciplinary approach of clinical management [J]. Neurochirurgie, 2021,doi: 10.1016/j.neuchi.2021.04.001.
[3] Srinivasa Reddy A, Chenna Reddy P. MRI brain tumor segmentation and prediction using modified region growing and adaptive SVM [J]. Soft Computing, 2021, 25(5): 4135-4148.
[4] Shree NV, Kumar T. Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network [J]. Brain informatics, 2018, 5(1): 23-30.
[5] Arunachalam M, Royappan Savarimuthu S. An efficient and automatic glioblastoma brain tumor detection using shift-invariant shearlet transform and neural networks [J]. Int J Imag Syst Tech, 2017, 27(3): 216-226.
[6] Tustison NJ, Avants BB, Cook PA, et al. N4ITK: improved N3 bias correction [J]. IEEE Trans Med Imaging, 2010, 29(6): 1310-1320.
[7] Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL [J]. Neuroimage, 2004, 23(Suppl 1): S208-S219.
[8] Ulaby FT, Kouyate F, Brisco B, et al. Textural infornation in SAR images [J]. IEEE Trans Geosci Remote Sens, 1986, 24(2): 235-245.
[9] Rosner B, Glynn RJ, Ting Lee ML. Incorporation of clustering effects for the Wilcoxon rank sum test: a large-sample approach [J]. Biometrics, 2003, 59(4): 1089-1098.
[10] Breiman L. Bagging predictors [J]. Machine Learning, 1996, 24(2): 123-140.
[11] Varma S, Simon R. Bias in error estimation when using cross-validation for model selection [J]. BMC Bioinformatics, 2006, 7(1): 91.
[12] Hakyemez B, Erdogan C, Gokalp G, et al. Solitary metastases and high-grade gliomas: radiological differentiation by morphometric analysis and perfusion-weighted MRI [J]. Clin Radiol, 2010, 65(1): 15-20.
[13] Swinburne NC, Schefflein J, Sakai Y, et al. Machine learning for semi-automated classification of glioblastoma, brain metastasis and central nervous system lymphoma using magnetic resonance advanced imaging [J]. Ann Transl Med, 2019, 7(11): 232.
[14] Isobe T, Yamamoto T, Akutsu H, et al. Preliminary study for differential diagnosis of intracranial tumors using in vivo quantitative proton MR spectroscopy with correction for T2 relaxation time [J]. Radiography, 2015, 21(1): 42-46.
[15] Jin Y, Peng H, Peng J. Brain glioma localization diagnosis based on magnetic resonance imaging [J]. World Neurosurg, 2021, 149: 325-332.
[16] Papageorgiou T, Chourmouzi D, Drevelengas A, et al. Diffusion tensor imaging in brain tumors: a study on gliomas and metastases [J]. Physica Medica, 2015, 31(7): 767-773.
[17] Ortiz-Ramón R, Ruiz-Espa?a S, Mollá-Olmos E, et al. Glioblastomas and brain metastases differentiation following an MRI texture analysis-based radiomics approach [J]. Phys Med, 2020, 76: 44-54.
[18] Liang W, Zhao YQ, Gui DQ, et al. Prediction of lung cancer typing based on radiomics[J]. Acta Anatomica Sinica, 2019, 50(4): 495-500.(in Chinese)
梁伟,赵艳秋,桂东奇,等.基于影像组学的肺癌分型预测[J].解剖学报, 2019, 50(4): 495-500.
|