[1]Vertes RP, Linley SB, Hoover WB. Limbic circuitry of the midline thalamus [J]. Neurosci Biobehav Rev, 2015, 54:89-107.
[2]Keyes PC, Adams EL, Chen Z, et al. Orchestrating opiate-associated memories in thalamic circuits [J]. Neuron, 2020, 107(6):1113-1123.
[3]Otis JM, Zhu M, Namboodiri V, et al. Paraventricular thalamus projection neurons integrate cortical and hypothalamic signals for cue-reward processing [J]. Neuron, 2019, 103(3):423-431.
[4]Fraser KM, Janak PH. Stressing the other paraventricular nucleus [J]. Nat Neurosci, 2018, 21(7):901-902.
[5]Mátyás F, Komlósi G, Babiczky , et al. A highly collateralized thalamic cell type with arousal-predicting activity serves as a key hub for graded state transitions in the forebrain [J]. Nat Neurosci, 2018, 21(11):1551-1562.
[6]Colavito V, Tesoriero C, Wirtu AT, et al. Limbic thalamus and state-dependent behavior: the paraventricular nucleus of the thalamic midline as a node in circadian timing and sleep/wake-regulatory networks [J]. Neurosci Biobehav Rev, 2015, 54:3-17.
[7]Kirouac GJ. Placing the paraventricular nucleus of the thalamus within the brain circuits that control behavior [J]. Neurosci Biobehav Rev, 2015, 56:315-329.
[8]Ren S, Wang Y, Yue F, et al. The paraventricular thalamus is a critical thalamic area for wakefulness [J]. Science, 2018, 362(6413):429-434.
[9]Zhou K, Zhu Y. The paraventricular thalamic nucleus: a key hub of neural circuits underlying drug addiction [J]. Pharmacol Res, 2019, 142:70-76.
[10]Gao C, Leng Y, Ma J, et al. Two genetically, anatomically and functionally distinct cell types segregate across anteroposterior axis of paraventricular thalamus [J]. Nat Neurosci, 2020, 23(2):217-228.
[11]Richter TA, Kolaj M, Renaud LP. Low voltage-activated Ca2+ channels are coupled to Ca2+ -induced Ca2+ release in rat thalamic midline neurons [J]. J Neurosci, 2005, 25(36):8267-8271.
[12]Moutsimilli L, Farley S, El KM, et al. Antipsychotics increase vesicular glutamate transporter 2 (VGLUT2) expression in thalamolimbic pathways [J]. Neuropharmacology, 2008, 54(3):497-508.
[13]Kolaj M, Zhang L, Hermes ML, et al. Intrinsic properties and neuropharmacology of midline paraventricular thalamic nucleus neurons [J]. Front Behav Neurosci, 2014, 8:132.
[14]Yeoh JW, James MH, Graham BA, et al. Electrophysiological characteristics of paraventricular thalamic (PVT) neurons in response to cocaine and cocaine- and amphetamine-regulated transcript (CART) [J]. Front Behav Neurosci, 2014, 8:280.
[15]Li Y, Dong X, Li S, et al. Lesions of the posterior paraventricular nucleus of the thalamus attenuate fear expression [J]. Front Behav Neurosci, 2014, 8:94.
[16]Zhang X, van den Pol AN. Rapid binge-like eating and body weight gain driven by zona incerta GABA neuron activation [J]. Science, 2017, 356(6340):853-859.
[17]Lee JS, Lee EY, Lee HS. Hypothalamic, feeding/arousal-related peptidergic projections to the paraventricular thalamic nucleus in the rat [J]. Brain Res, 2015, 1598:97-113.
[18]Otis JM, Namboodiri VMK, Matan AM, et al. Prefrontal cortex output circuits guide reward seeking through divergent cue encoding [J]. Nature, 2017, 543(7643):103-107.
[19]Dong X, Li S, Kirouac GJ. Collateralization of projections from the paraventricular nucleus of the thalamus to the nucleus accumbens, bed nucleus of the stria terminalis, and central nucleus of the amygdala [J]. Brain Struct Funct, 2017, 222(9):3927-943.
[20]Unzai T, Kuramoto E, Kaneko T, et al. Quantitative analyses of the projection of individual neurons from the midline thalamic nuclei to the striosome and matrix compartments of the rat striatum [J]. Cereb Cortex, 2017, 27(2):1164-1181.
[21]Parsons MP, Li S, Kirouac GJ. The paraventricular nucleus of the thalamus as an interface between the orexin and CART peptides and the shell of the nucleus accumbens [J]. Synapse, 2006, 59(8):480-490.
[22]Do-Monte FH, Minier-Toribio A, Qui?ones-Laracuente K, et al. Thalamic regulation of sucrose seeking during unexpected reward omission [J]. Neuron, 2017, 94(2):388-400.
[23]Jurik A, Auffenberg E, Klein S, et al. Roles of prefrontal cortex and paraventricular thalamus in affective and mechanical components of visceral nociception [J]. Pain, 2015, 156(12):2479-2491.
[24]Li S, Kirouac GJ. Sources of inputs to the anterior and posterior aspects of the paraventricular nucleus of the thalamus [J]. Brain Struct Funct, 2012, 217(2):257-273.
[25]Li S, Kirouac GJ. Projections from the paraventricular nucleus of the thalamus to the forebrain, with special emphasis on the extended amygdala [J]. J Comp Neurol, 2008, 506(2):263-287.
[26]Flagel SB, Cameron CM, Pickup KN, et al. A food predictive cue must be attributed with incentive salience for it to induce c-fos mRNA expression in cortico-striatal-thalamic brain regions [J]. Neuroscience, 2011, 196:80-96.
[27]Timofeeva E, Richard D. Activation of the central nervous system in obese Zucker rats during food deprivation [J]. J Comp Neurol, 2001, 441(1):71-89.
[28]Choi EA, Jean-Richard-Dit-Bressel P, Clifford C, et al. Paraventricular thalamus controls behavior during motivational conflict [J]. J Neurosci, 2019, 39(25):4945-4958.
[29]Hsu DT, Kirouac GJ, Zubieta JK, et al. Contributions of the paraventricular thalamic nucleus in the regulation of stress, motivation, and mood [J]. Front Behav Neurosci, 2014, 8:73.
[30]Hua R, Wang X, Chen X, et al. Calretinin neurons in the midline thalamus modulate starvation-induced arousal [J]. Curr Biol, 2018, 28(24):3948-3959.
[31]Ong ZY, Liu J, Pang ZP, et al. Paraventricular thalamic control of food intake and reward: role of glucagon-like peptide-1 receptor signaling [J]. Neuropsychopharmacology, 2017, 42(12):2387-2397.
[32]Hikida T, Morita M, Macpherson T. Neural mechanisms of the nucleus accumbens circuit in reward and aversive learning [J]. Neurosci Res, 2016, 108:1-5.
[33]Labouèbe G, Boutrel B, Tarussio D, et al. Glucose-responsive neurons of the paraventricular thalamus control sucrose-seeking behavior [J]. Nat Neurosci, 2016, 19(8):999-1002.
[34]Clark AM, Leroy F, Martyniuk KM, et al. Dopamine D2 receptors in the paraventricular thalamus attenuate cocaine locomotor sensitization [J]. eNeuro, 2017, 4(5):217-227.
|