[1]Xian M, Cai J, Zheng K, et al. Aloe-emodin prevents nerve injury and neuroinflammation caused by ischemic stroke via the PI3K/AKT/mTOR and NF-kappaB pathway [J]. Food Funct, 2021, 12(17): 8056-8067.
[2]Xu HB, Luo Y. Effect of electroacupuncture on the formation of glial scars in cerebral cortex of rats with focal cerebral ischemia /reperfusion [J]. Acta Anatomica Sinica, 2022, 53(6): 705-710. (in Chinese)
胥虹贝, 罗勇. 电针对局灶性脑缺血/再灌注大鼠大脑皮质胶质瘢痕形成的影响 [J]. 解剖学报, 2022, 53(6): 705-710.
[3]Yuan Y, Rangarajan, Kan EM, et al. Scutellarin regulates the Notch pathway and affects the migration and morphological transformation of activated microglia in experimentally induced cerebral ischemia in rats and in activated BV-2 microglia [J]. J Neuroinflammation, 2015, 20(12):11.
[4]Wang D, Liu F, Zhu L, et al. FGF21 alleviates neuroinflammation following ischemic stroke by modulating the temporal and spatial dynamics of microglia/macrophages [J]. J Neuroinflammation, 2020, 17(1): 257.
[5]Stuckey SM, Ong LK, Collins-Praino LE, et al. Neuroinflammation as a key driver of secondary neurodegeneration following stroke [J]. Int J Mol Sci, 2021, 22(23): 13101.
[6]Lee NT, Ong LK, Gyawali P, et al. Role of purinergic signalling in endothelial dysfunction and thrombo-inflammation in ischaemic stroke and cerebral small vessel disease [J]. Biomolecules, 2021, 11(7): 994.
[7]Wang L, Ma Q. Clinical benefits and pharmacology of scutellarin: A comprehensive review [J]. Pharmacol Ther, 2018, 190:105-127.
[8]Zhang Y, Zhang Z, Wang J, et al. Scutellarin alleviates cerebral ischemia/reperfusion by suppressing oxidative stress and inflammatory responses via MAPK/NF-kappaB pathways in rats [J]. Environ Toxicol, 2022, 37(12): 2889-2896.
[9]Chen HL, Jia WJ, Li HE, et al. Scutellarin exerts anti-inflammatory effects in activated microglia/brain macrophage in cerebral ischemia and in activated BV-2 microglia through regulation of MAPKs signaling pathway [J]. Neuromolecular Med, 2020, 22(2): 264-277.
[10]Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling [J]. Nat Rev Mol Cell Biol, 2020, 21(9): 501-521.
[11]Chin AC. Neuroinflammation and the cGAS-STING pathway [J]. J Neurophysiol, 2019, 121(4): 1087-1091.
[12]Paul BD, Snyder SH, Bohr VA. Signaling by cGAS-STING in neurodegeneration, neuroinflammation, and aging [J]. Trends Neurosci, 2021, 44(2): 83-96.
[13]Ding R, Li H, Liu Y, et al. Activating cGAS-STING axis contributes to neuroinflammation in CVST mouse model and induces inflammasome activation and microglia pyroptosis [J]. J Neuroinflammation, 2022, 19(1): 137.
[14]Liao Y, Cheng J, Kong X, et al. HDAC3 inhibition ameliorates ischemia/reperfusion-induced brain injury by regulating the microglial cGAS-STING pathway [J]. Theranostics, 2020, 10(21): 9644-9662.
[15]Gamdzyk M, Doycheva DM, Araujo C, et al. cGAS/STING pathway activation contributes to delayed neurodegeneration in neonatal hypoxia-ischemia rat model: possible involvement of LINE-1 [J]. Mol Neurobiol, 2020, 57(6): 2600-2619.
[16]Yu CH, Davidson S, Harapas CR, et al. TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS [J]. Cell, 2020, 183(3): 636-649 e18.
[17]Wang W, Hu D, Wu C, et al. STING promotes NLRP3 localization in ER and facilitates NLRP3 deubiquitination to activate the inflammasome upon HSV-1 infection [J]. PLoS Pathog, 2020, 16(3): e1008335.
|