[1] Anjum A, Yazid M D, Fauzi Daud M, et al. Spinal cord injury: pathophysiology, multimolecular Interactions, and underlying recovery mechanisms[J]. Int J Mol Sci, 2020, 21(20): 1-35.
[2] Li WX, Li RF, Yu BL. Epidemiological analysis of 956 inpatients with traumatic spinal cord injury from 2012 to 2019[J]. Chinese Journal of Spinal Cord, 2021, 31(7): 626-631. (in Chinese)
李文选, 李瑞峰, 于宝龙. 2012~2019年度956例创伤性脊髓损伤住院患者流行病学分析[J]. 中国脊柱脊髓杂志, 2021, 31(7): 626-631.
[3] Spinal Cord Injury[EB/OL]. https://www.who.int/news-room/fact-sheets/detail/spinal-cord-injury.
[4] Egawa N, Lok J, Washida K, et al. Mechanisms of axonal damage and repair after central nervous system injury[J]. Transl Stroke Res, 2017, 8(1): 14-21.
[5] Ko CC, Tu TH, Wu JC, et al. Acidic fibroblast growth foctor in spinal cord injury[J]. Neurospine, 2019, 16(4):728-738.
[6] Quraishe S, Forbes L H, Andrews M R. The extracellular environment of the CNS: influence on plasticity, sprouting, and axonal regeneration after spinal cord injury[J]. Neural Plast, 2018, 2018: 2952386.
[7] Stern S, Hilton BJ, Burnside ER, et al. RhoA drives actin compaction to restrict axon regeneration and astrocyte reactivity after CNS injury[J]. Neuron, 2021, 109(21): 3436-3455.
[8] Schwab M E. Functions of Nogo proteins and their receptors in the nervous system[J]. Nat Rev Neurosci, 2010, 11(12): 799-811.
[9] Huber A B, Weinmann O, Brösamle C, et al. Patterns of Nogo mRNA and protein expression in the developing and adult rat and after CNS lesions[J]. J Neurosci, 2002, 22(9): 3553-3567.
[10] Hu QG, Liu HC, Chen L, et al. Nogo-A protein in rat dorsal root ganglia promotes microtubule polymerization and inflammatory thermal pain sensitization[J]. Acta Anatomica sinica, 2019,50(5): 549-553. (in Chinese)
胡启国, 刘怀存, 陈玲, 等. 大鼠背根神经节中的Nogo-A蛋白促进微管聚合和炎症热痛觉敏化的发生[J]. 解剖学报, 2019, 50(5): 549-553.
[11] Liu H, Su D, Liu L, et al. Identification of a new functional domain of Nogo-A that promotes inflammatory pain and inhibits neurite growth through binding to NgR1[J]. Faseb J, 2020, 34(8): 10948-10965.
[12] Mohammed R, Opara K, Lall R, et al. Evaluating the effectiveness of anti-Nogo treatment in spinal cord injuries[J]. Neural Dev, 2020, 15(1): 1-9.
[13] Kucher K, Johns D, Maier D, et al. First-in-man intrathecal application of neurite growth-promoting anti-Nogo-A antibodies in acute spinal cord injury[J]. Neurorehabil Neural Repair, 2018, 32(6-7): 578-589.
[14] Drake S, Fournier A. Nogo BACE jumps on the exosome[J]. J Biol Chem, 2020, 295(8): 2184-2185.
[15] Sekine Y, Lindborg JA, Strittmatter S M. A proteolytic C-terminal fragment of Nogo-A (reticulon-4A) is released in exosomes and potently inhibits axon regeneration[J]. J Biol Chem, 2020, 295(8): 2175-2183.
[16] Zuo Y, Sun H, Song L, et al. LncRNA FTX involves in the Nogo-66-induced inhibition of neurite outgrowth through regulating PDK1/PKB/GSK-3βpathway[J]. Cell Mol Neurobiol, 2020, 40(7): 1143-1153.
[17] Roy A, Pathak Z, Kumar H. Strategies to neutralize RhoA/ROCK pathway after spinal cord injury[J]. Exp Neurol, 2021, 343: 113794.
[18] Fan YJ, Li L, Xu J, et al. The role of different OMgp domains in inhibiting neurite growth[J]. Chinese Journal of Cell Biology, 2004, 26(3): 290-296. (in Chinese)
樊拥军, 李龙, 许健,等. OMgp不同结构域在抑制神经突起生长中的作用[J]. 细胞生物学杂志, 2004, 26(3): 290-296.
[19] Dou F, Huang L, Yu P, et al. Temporospatial expression and cellular localization of oligodendrocyte myelin glycoprotein (OMgp) after traumatic spinal cord injury in adult rats[J]. J Neurotrauma, 2009, 26(12): 2299-2311.
[20] Ji B, Case LC, Liu K, et al. Assessment of functional recovery and axonal sprouting in oligodendrocyte-myelin glycoprotein (OMgp) null mice after spinal cord injury[J]. Mol Cell Neurosci, 2008, 39(2): 258-267.
[21] Zearfoss NR, Johnson ES, Ryder SP. hnRNP A1 and secondary structure coordinate alternative splicing of Mag[J]. Rna, 2013, 19(7): 948-957.
[22] Quarles RH. Myelin-associated glycoprotein (MAG): past, present and beyond[J]. J Neurochem, 2007, 100(6): 1431-1448.
[23] Cafferty WB, Duffy P, Huebner E, et al. MAG and OMgp synergize with Nogo-A to restrict axonal growth and neurological recovery after spinal cord trauma[J]. J Neurosci, 2010, 30(20): 6825-6837.
[24] Li M, Shibata A, Li C, et al. Myelin-associated glycoprotein inhibits neurite/axon growth and causes growth cone collapse[J]. J Neurosci Res, 1996, 46(4): 404-414.
[25] Lee J K, Geoffroy CG, Chan AF, et al. Assessing spinal axon regeneration and sprouting in Nogo, MAG, and OMgp-Deficient Mice[J]. Neuron, 2010, 66(5): 663-670.
[26] Zhang A, Bai Z, Yi W, et al. Overexpression of miR-338-5p in exosomes derived from mesenchymal stromal cells provides neuroprotective effects by the Cnr1/Rap1/Akt pathway after spinal cord injury in rats[J]. Neurosci Lett, 2021, 761: 1-12.
[27] Buzoianu-Anguiano V, Estrada IJ. Paraplegia: Strategies to Repair Spinal Cord Injuries: Single vs Combined Treatments[M]. London: IntechOpen, 2020: 1-18.
[28] Wang X, Zhou T, Maynard GD, et al. Nogo receptor decoy promotes recovery and corticospinal growth in non-human primate spinal cord injury[J]. Brain, 2020, 143(6): 1697-1713.
[29] Mi S, Lee X, Shao Z, et al. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex[J]. Nat Neurosci, 2004, 7(3): 221-228.
[30] Park JB, Yiu G, Kaneko S, et al. A TNF receptor family member, TROY, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors[J]. Neuron, 2005, 45(3): 345-351.
[31] Ito S, Nagoshi N, Tsuji O, et al. LOTUS inhibits neuronal apoptosis and promotes tract regeneration in contusive spinal cord injury model mice[J]. eNeuro, 2018, 5(5): ENEURO.0303-18.2018.
[32] Lv B, Yuan W, Xu S, et al. Lentivirus-siNgR199 promotes axonal regeneration and functional recovery in rats[J]. Int J Neurosci, 2012, 122(3): 133-139.
[33] Xu J, He J, He H, et al. Comparison of RNAi NgR and NEP1-40 in acting on axonal regeneration after spinal cord injury in rat models[J]. Mol Neurobiol, 2017, 54(10): 8321-8331.
[34] Wang YT, Lu XM, Zhu F, et al. Ameliorative effects of p75NTR-ED-Fc on axonal regeneration and functional recovery in spinal cord-injured rats[J]. Mol Neurobiol, 2015, 52(3): 1821-1834.
[35] Wu H, Ding L, Wang Y, et al. MiR-615 regulates NSC differentiation in vitro and contributes to spinal cord injury repair by targeting LINGO-1[J]. Mol Neurobiol, 2020, 57(7): 3057-3074.
[36] Mi S, Pepinsky RB, Cadavid D. Blocking LINGO-1 as a therapy to promote CNS repair: from concept to the clinic[J]. CNS Drugs, 2013, 27(7): 493-503.
[37] Vaccaro G, Dumoulin A, Zuñiga NR, et al. The Nogo-66 receptors NgR1 and NgR3 are required for commissural axon pathfinding[J]. J Neurosci, 2022, 42(20): 4087-4100.
[38] Takai T. Paired immunoglobulin-like receptors and their MHC class I recognition[J]. Immunology, 2005, 115(4): 433-440.
[39] Liu J, Wang Y, Fu W. Axon regeneration impediment: the role of paired immunoglobulin-like receptor B[J]. Neural Regen Res, 2015, 10(8): 1338-1342.
[40] Liu J, Mi YJ, Jiang FL. Research progress in the treatment of central nervous system regeneration with PirB as target [J]. Journal of Neuroanatomy, 2014, 30(3): 372-376. (in Chinese)
刘洁, 米亚静, 姜凤良. 以PirB为靶点治疗中枢神经再生的研究进展[J]. 神经解剖学杂志, 2014, 30(3): 372-376.
[41] Bombeiro AL, Thomé R, Oliveira Nunes SL, et al. MHC-I and PirB upregulation in the central and peripheral nervous system following sciatic nerve injury[J]. PLoS One, 2016, 11(8): 1-18.
[42] Wang J, Zhang Y, Xia J, et al. Neuronal PirB upregulated in cerebral ischemia acts as an attractive theranostic target for ischemic stroke[J]. J Am Heart Assoc, 2018, 7(3): 1-13.
[43] Lu XM, Mao M, Xiao L, et al. Nucleic acid vaccine targeting Nogo-66 receptor and paired immunoglobulin-like receptor B as an immunotherapy strategy for spinal cord injury in rats[J]. Neurotherapeutics, 2019, 16(2): 381-393.
[44] Fujita Y, Takashima R, Endo S, et al. The p75 receptor mediates axon growth inhibition through an association with PIR-B[J]. Cell Death Dis, 2011, 2(9): 1-7.
[45] Kurihara Y, Takai T, Takei K. Nogo receptor antagonist LOTUS exerts suppression on axonal growthinhibiting receptor PIR-B[J]. J Neurochem, 2020, 155(3): 285-299.
[46] Ren R, Pang B, Han Y, et al. A glimpse of the structural biology of the metabolism of sphingosine-1-phosphate[J]. Contact, 2021, 4: 1-22.
[47] Yu L, He L, Gan B, et al. Structural insights into sphingosine-1-phosphate receptor activation[J]. Proc Natl Acad Sci USA, 2022, 119(16): 1-9.
[48] Kempf A, Tews B, Arzt ME, et al. The sphingolipid receptor S1PR2 is a receptor for Nogo-a repressing synaptic plasticity[J]. PLoS Biol, 2014, 12(1): 1-16.
[49] Seyedsadr MS, Weinmann O, Amorim A, et al. Inactivation of sphingosine1-phosphate receptor 2 (S1PR2) decreases demyelination and enhances remyelination in animal models of multiple sclerosis[J]. Neurobiol Dis, 2019, 124: 189-201.
|