[1]Arnold M, Singh D, Laversanne M, et al. Global burden of cutaneous melanoma in 2020 and projections to 2040[J]. JAMA Dermatol, 2022,158(5):495-503.
[2]Naik PP. Cutaneous malignant melanoma: a review of early diagnosis and management[J]. World J Oncol, 2021,12(1):7-19.
[3]Long GV, Swetter SM, Menzies AM, et al. Cutaneous melanoma[J]. Lancet, 2023, 402(10400): 485-502.
[4]He XC, Jin L, Li M, et al. Complete Box Fusion based on Ensemble Networks for rib fracture detection and localization[J]. Acta Anatomica Sinica, 2022, 53(3): 396-401. (in Chinese)
何学才, 金倞, 李铭, 等. 基于完全融合集成网络候选框的肋骨骨折检测方法[J]. 解剖学报, 2022, 53(3): 396-401.
[5]Deda LC, Goldberg RH, Jamerson TA, et al. Dermoscopy practice guidelines for use in telemedicine[J]. NPJ Digit Med, 2022,5(1):55.
[6]Thomas L, Puig S. Dermoscopy, digital dermoscopy and other diagnostic tools in the early detection of melanoma and follow-up of high-risk skin cancer patients[J]. Acta Derm Venereol, 2017, 97:14-21.
[7]Chatterjee S, Dey S, Munshi S. Integration of morphological preprocessing and fractal based feature extraction with recursive feature elimination for skin lesion types classification[J]. Comput Methods Programs Biomed,2019,178:201-218.
[8]Balasubramaniam V. Artificial intelligence algorithm with SVM classification using dermascopic images for melanoma diagnosis[J]. J Artif Intell Capsule Netw, 2021, 3(1): 34-42.
[9]Jojoa Acosta MF, Caballero Tovar LY, Garcia-Zapirain MB, et al. Melanoma diagnosis using deep learning techniques on dermatoscopic images[J]. BMC Med Imaging, 2021, 21(1): 6.
[10]Zhang J, Huang J, Jin S, et al. Vision-language models for vision tasks: A survey[J]. IEEE Trans Pattern Anal Mach Intell, 2024,46(8):5625-5644.
[11]Radford A, Kim JW, Hallacy C, et al. Learning transferable visual models from natural language supervision[C]. Proceedings of Machine Learning Research (PCLR), 2021, 139:8748-8763.
[12]Zhou K, Yang J, Loy CC, et al. Learning to prompt for vision-language models[J]. Int J Comput Vis, 2022,130:2337-2348.
[13]Yao H, Zhang R, Xu C. Visual-language prompt tuning with knowledge-guided context optimization[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023:6757-6767.
[14]Kawahara J, Daneshvar S, Argenziano G, et al. Seven-point checklist and skin lesion classification using multitask multimodal neural nets[J]. IEEE J Biomed Health Inform, 2019,23(2):538-546.
[15]Patrício C, Neves JC, Teixeira LF. Coherent concept-based explanations in medical image and its application to skin lesion diagnosis[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023: 3798-3807.
[16]Bie Y, Luo L, Chen H. MICA: towards explainable skin lesion diagnosis via multi-level image-concept alignment[C]. Proceedings of the AAAI Conference Artificial Intelligence (AAAI), 2024,38(2):837-845.
[17]Harrington E, Clyne B, Wesseling N, et al. Diagnosing malignant melanoma in ambulatory care: a systematic review of clinical prediction rules[J]. BMJ Open, 2017,7(3):e014096.
[18]Sarkar A, Vijaykeerthy D, Sarkar A, et al. A Framework for learning ante-hoc explainable models via concepts[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022:10276-10285.
[19]Patrício C, Neves JC, Teixeira LF. Coherent concept-based explanations in medical image and its application to skin lesion diagnosis[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2023:3799-3808.
[20]Yuksekgonul M, Wang M, Zou J, et al. Post-hoc concept bottleneck models[C]. The Eleventh International Conference on Learning Representations (ICLR), 2023.
[21]Adegun A, Viriri S. Deep learning techniques for skin lesion analysis and melanoma cancer detection: a survey of state-of-the-art[J]. Artif Intell Rev, 2021, 54(2): 811-841.
|