[1] Feng Y, Hans C,Mcllwain E, et al. Over-expression in the central nervous system reduces angiotensin-Ⅱ-mediated cardiac hypertrophy[J]. PLoS One, 2012, 7(11):e48910.
[2] Wang, Fan SJ, Li SM, et al. Protective role of ACE2-Ang-(1-7)-Mas in myocardial fibrosis by downregulating KCa 3.1 channel via ERK1/2 pathway[J]. Pflugers Arch, 2016, 468(11-12):2041-2051.
[3] Eddy AA. Overview of the cellular and molecular basis of kidney fibrosis[J]. Kidney Int Suppl, 2014, 4(1): 2-8.
[4] Mack M, Yanagita M. Origin of myofibroblasts and cellular events triggering fibrosis[J]. Kidney Int, 2015, 87(2):297-307.
[5] Boor, Floege J. The renal (myo-)fibroblast: A heterogeneous group of cells[J]. Nephrol Dial Transplant, 2012, 27(8):3027-3036.
[6] Thieme, Sivritas SH, Mergia E, et al. Phosphodiesterase 5 inhibition ameliorates angiotensin Ⅱ-dependenthypertension and renal vascular dysfunction[J].Am J Physiol Renal Physiol, 2017,312(3): F474-F478.
[7] Wen, Liu Y, Tang T, et al. NLRP3 inflammasome activation is involved in Ang Ⅱ-induced kidney damage via mitochondrial dysfunction[J].Oncotarget, 2016, 7(34):54290-54302.
[8] Norlander, Saleh MA, Kamat NV, et al. Interleukin 17A regulates renal sodium transporters and renal injury in angiotensin Ⅱ-induced hypertension[J]. Hypertension, 2016, 68(1):167-174.
[9] Casare, Thieme K, Costa-Pessoa JM, et al. Renovascular remodeling and renal injury after extended angiotensin Ⅱ infusion[J].Am J Physiol Renal Physiol, 2016, 310(11): F1295-F1307.
[10]Liu Y, Sun XJ, Li Ch, et al. Advances in the roles of microRNA-29 in renal fibrosis[J].Acta Anatomica Sinica,2017,48(5): 622-627. (in Chinese)
刘祎,孙雪娇,李城, 等.MicroRNA-29在肾纤维化进程中的研究进展[J].解剖学报,2017,48(5): 622-627.
[11] Liu Z, Huang XR, Lan HY. Smad3 mediates ANG Ⅱ-induced hypertensive kidney disease in mice[J]. Am J Physiol Renal Physiol, 2012, 302(8):F986-997.
[12] Rüster R, Wolf G. Angiotensin Ⅱ as a morphogenic cytokine stimulating renal fibrogenesis[J]. J Am Soc Nephrol, 2011, 22(7):1189-1199.
[13] Yan FN, Liu SX, Cui L, et al. Effect of TRPV4 on angiotensin Ⅱ-induced renal injury in mice[J]. Chinese Journal of Comparative Medicine, 2018, 28(2):1-6. (in Chinese)
闫凤娜,刘素晓,崔琳, 等.TRPV4受体对血管紧张素Ⅱ诱导的小鼠肾损害的影响[J].中国比较医学杂志, 2018, 28(2):1-6.
[14] Mu?oz MC, Burghi Ⅴ, Miquet JG, et al. Downregulation of the ACE2/Ang-(1-7)/Mas axis in transgenic mice overexpressing GH [J]. J Endocrinol, 2014, 221(2):215-227.
[15] Fu, Zhang T, Wang L,et al. Inhibition of the K(+)channel KCa3.1 reduces TGF-β1-induced premature senescence, myofibroblast phenotype transition and proliferation of mesangial cells[J]. PLoS One, 2014, 9(1):e87410.
[16] Giani JF, Miquet JG, Muoz MC, et al. Upregulation of the angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas receptor axis in the heart and the kidney of growth hormone receptor knock-out mice[J]. Growth Horm IGF Res, 2012, 22(6):224-233.
[17] Chen CL, Liao JW, Hu OY, et al. Blockade of KCa-3.1 potassium channels protects against cisplatin-induced acute kidney injury[J].Arch Toxicol, 2016, 90(9):2249-2260.
[18] Guimar?es GG, Santos SH, Oliveira ML, et al. Exercise induces renin-angiotensin system unbalance and high collagen expression in the heart of Mas-deficient mice[J]. Peptides, 2012, 38(1):54-61.
[19] Huang C, Zhang L, Shi Y, et al. The KCa 3.1 blocker TRAM34 reverses renal damage in a mouse model of established diabetic nephropathy[J]. PLoS One, 2018, 13(2):e0192800.
|