[1] Guo ZhK, Wu JF, Shan WH. Expression of collagen Ⅰ and Ⅲ in the hypertrophic myocardial tissue of the rat heart treated by isoproterenol[J]. Acta Anatomica Sinica, 2012, 43(1): 93-97.(in Chinese)
郭志坤,武俊芳,单卫华. 肾上腺素诱导的大鼠肥厚心肌组织中Ⅰ、Ⅲ型胶原蛋白的表达[J]. 解剖学报,2012, 43(1): 93-97.
[2] Maillet M, Vanberlo JH, Molkentin JD. Molecular basis of physiological heart growth: fundamental concepts and new players [J]. Nat Rev Mol Cell Biol, 2013, 14(1): 38-48.
[3] ShimizuⅠ, Minamino T. Physiological and pathological cardiac hypertrophy [J]. J Mol Cell Cardiol, 2016, 97(2): 45-62.
[4] Eghbail M, Wang Y, Toro L, et al. Heart hypertrophy during pregnancy: a better functioning heart[J]? Trends Cardiovasc Med, 2006, 16(8): 285-291.
[5] Kim J, Wende AR, Sena S, et al. Insulin-like growth factor Ⅰ receptor signaling is required for exercise-induced cardiac hypertrophy [J]. Mol Endocrinol, 2008, 22(11): 2531-2543.
[6] Wei X, Wu B, Zhao J, et al. Myocardial hypertrophic preconditioning attenuates cardiomyocyte hypertrophy and slows progression to heart failure through upregulation of S100A8/A9 [J]. Circulation, 2015, 131(17): 1506-1517.
[7] Lee SH, Yang DK, Choi BY, et al. The transcription factor Eya2 prevents pressure overload-induced adverse cardiac remodeling [J]. J Mol Cell Cardiol, 2009, 46(4): 596-605.
[8] Yang DK, Choi BY, Lee YH, et al. Gene profiling during regression of pressure overload-induced cardiac hypertrophy [J]. Physiol Genomics, 2007, 30(1): 1-7.
[9] Gopisetty G, Thangarajan R. Mammalian mitochondrial ribosomal small subunit (MRPS) genes: A putative role in human disease [J]. Gene, 2016, 589(1): 27-35.
[10] Kolwicz SC, Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes [J]. Circ Res, 2013, 113(5): 603-616.
[11] Huang J, Wu J, Wang S, et al. Ultrasound biomicroscopy validation of a murine model of cardiac hypertrophic preconditioning: comparison with a hemodynamic assessment [J]. Am J Physiol Heart Circ Physiol, 2017, 313(1): 138-148.
[12] Shen C, Wang C, Fan F, et al. Acetaldehyde dehydrogenase 2 (ALDH2) deficiency exacerbates pressure overload-induced cardiac dysfunction by inhibiting Beclin-1 dependent autophagy pathway [J]. Biochim Biophys Acta, 2015, 1852(2): 310-318.
[13] Calvo SE, Mootha VK. The mitochondrial proteome and human disease [J]. Annu Rev Genomics Hum Genet, 2010, 11: 25-44.
[14] Mai N, Chrzanowska-Lightowlers ZM, Lightowlers RN. The process of mammalian mitochondrial protein synthesis [J]. Cell Tissue Res, 2017, 367(1): 5-20.
[15] Cavdar E, Burkhart W, Blackburn K, et al. The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present [J]. J Biol Chem, 2001, 276(22): 19363-19374.
[16] Rackham O, Busch JD, Matic S, et al. Hierarchical RNA processing is required for mitochondrial ribosome assembly [J]. Cell Rep, 2016, 16(7): 1874-1890.
[17] Koc EC, Cimen H, Kumcuoglu B, et al. Identification and characterization of CHCHD1, AURKAIP1, and CRIF1 as new members of the mammalian mitochondrial ribosome [J]. Front Physiol, 2013, (4): 183-188.
[18] Kim SJ, Kwon MC, Ryu MJ, et al. CRIF1 is essential for the synthesis and insertion of oxidative phosphorylation polypeptides in the mammalian mitochondrial membrane [J]. Cell Metab, 2012, 16(2): 274-283.
[19] Shin J, Lee SH, Kwon MC, et al. Cardiomyocyte specific deletion of Crif1 causes mitochondrial cardiomyopathy in mice [J]. PLoS One, 2013, 8(1): e53577.
[20] Fiermonte G, Dolce V, Arrigoni R, et al. Organization and sequence of the gene for the human mitochondrial dicarboxylate carrier: evolution of the carrier family [J]. Biochem J, 1999, 344(Pt 3): 953-960.
[21] Yu H, Zhao Z, Yu X, et al. Bovine lipid metabolism related gene GPAM: Molecular characterization, function identification, and association analysis with fat deposition traits [J]. Gene, 2017, 609: 9-18.
|