[1] Zarei S, Carr K, Reiley L, et al. A comprehensive review of amyotrophic lateral sclerosis [J]. Surg Neurol Int, 2015,6:171.
[2] Kaur SJ, McKeown SR, Rashid S. Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis [J]. Gene, 2016,577(2):109-118.
[3] Shaw PJ. Molecular and cellular pathways of neurodegeneration in motor neurone disease [J]. J Neurol Neurosurg Psychiatry, 2005,76(8):1046-1057.
[4] D’Amico E, Factor-Litvak P, Santella RM, et al. Clinical perspective on oxidative stress in sporadic amyotrophic lateral sclerosis[J]. Free Radic Biol Med, 2013,65(113):509-527.
[5] Hadzhieva M, Kirches E, Wilisch-Neumann A, et al. Dysregulation of iron protein expression in the G93A model of amyotrophic lateral sclerosis[J]. Neuroscience, 2013,230(30):94-101.
[6] Crichton RR, Dexter DT, Ward RJ. Brain iron metabolism and its perturbation in neurological diseases [J]. J Neural Transm (Vienna), 2011, 118(3):301-314.
[7] Jeong SY, Rathore KI, Schulz K, et al. Dysregulation of iron homeostasis in the CNS contributes to disease progression in a mouse model of amyotrophic lateral sclerosis [J]. J Neurosci,2009,29(3):610-619.
[8] Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s, prions, bactericides, chemical toxicology and others as examples [J]. Arch Toxicol, 2010,84(11):825-889.
[9] Ikeda K, Hirayama T, Takazawa T, et al. Relationships between disease progression and serum levels of lipid, urate, creatinine and ferritin in japanese patients with amyotrophic lateral sclerosis: a cross-sectional study[J]. Intern Med, 2012,51(12):1501-1508.
[10] Wang T, Xu SF, Fan YG, et al. Iron pathophysiology in Alzheimer’s diseases [J]. Adv Exp Med Biol, 2019,1173(1):67-104.
[11] Belaidi AA, Bush AI. Iron neurochemistry in Alzheimer‘s disease and Parkinson’s disease: targets for therapeutics [J]. J Neurochem, 2016,139(94):179-197.
[12] Jiang H, Wang J, Rogers J, et al. Brain iron metabolism dysfunction in Parkinson’s disease [J]. Mol Neurobiol, 2017,54(4):3078-3101.
[13] Ingrassia R, Garavaglia B, Memo M. DMT1 expression and iron levels at the crossroads between aging and neurodegeneration [J]. Front Neurosci, 2019,13():575.
[14] Fu LJ, Duan XL, Yu P, et al. The Expression and effects of hepcidin in mouse brain and its modulating effects on ferroportin 1 and divalent metal transporter 1[J]. Acta Anatomica Sinica, 2007, 38(3):265-270.(in Chinese)
付丽娟, 段相林, 于鹏, 等. 铁调素在小鼠脑内的表达及其对膜铁转运蛋白1和二价金属离子转运体1表达的影响[J]. 解剖学报, 2007,38(3): 265-270.
[15] Wang L, Liu X, You LH, et al. Hepcidin and iron regulatory proteins coordinately regulate ferroportin 1 expression in the brain of mice[J]. J Cell Physiol, 2019, 234(5):7600-7607.
[16] Pantopoulos K, Hentze MW. Activation of iron regulatory protein-1 by oxidative stress in vitro [J]. Proc Natl Acad Sci USA, 1998,95(18):10559-10563.
[17] Zhou FH, Guan YJ, Chen YC, et al. miRNA-9 expression is upregulated in the spinal cord of G93A-SOD1 transgenic mice[J]. Int J Clin Exp Pathol, 2013,6(9):1826-1838.
[18] Pu LD, Zhang YW, Wang Q, et al. Expression of DDX3 and casein kinase 1ε in the hippocampus of the amyotrophic lateral sclerosis transgenic mice[J].Acta Anatomica Sinica, 2017, 48(4):375-380.(in Chinese)
蒲蕾东,张雅雯,王箐,等. DDX3和酪蛋白激酶1ε在肌萎缩侧索硬化症转基因鼠海马中的表达[J]. 解剖学报, 2017,48(4):375-380.
[19] Nakamura T, Naguro I, Ichijo H. Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases[J]. Biochim Biophys Acta Gen Subj, 2019,1863(9):1398-1409.
[20] Urrutia P, Aguirre P, Esparza A, et al. Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells[J]. J Neurochem, 2013, 126(114):541-549.
[21] Lee JK, Shin JH, Gwag BJ, et al. Iron accumulation promotes TACE-mediated TNF-α secretion and neurodegeneration in a mouse model of ALS[J]. Neurobiol Dis, 2015,80(7):63-69.
[22] Jeong SY, Rathore KI, Schulz K, et al. Dysregulation of iron homeostasis in the CNS contributes to disease progression in a mouse model of amyotrophic lateral sclerosis[J]. J Neurosci, 2009,29(3): 610-619.
[23] Healy S, McMahon JM, FitzGerald U. Modelling iron mismanagement in neurodegenerative disease in vitro: paradigms, pitfalls, possibilities & practical considerations[J]. Prog Neurobiol,2017,158(4):1-14.
[24] Zhang HY, Wang ND, Song N, et al. 6-Hydroxydopamine promotes iron traffic in primary cultured astrocytes [J]. Biometals, 2013,26(5):705-714.
[25] Bishop GM, Dang TN, Dringen R, et al. Accumulation of non-transferrin-bound iron by neurons, astrocytes, and microglia [J]. Neurotox Res, 2011,19(3):443-451.
[26] Winn NC, Volk KM, Hasty AH. Regulation of tissue iron homeostasis: the macrophage “ferrostat”[J]. JCI Insight, 2020,5(2): e132964.
[27] Cui JT, Guo XL, Li QJ, et al. Hepcidin-to-ferritin ratio is decreased in astrocytes with extracellular alpha-synuclein and iron exposure [J]. Front Cell Neurosci, 2020, 14:47.
|