[1] Robinson LR. Traumatic injury to peripheral nerves[J]. Muscle Nerve, 2000, 23(6): 863-873.
[2] Bergmeister KD, Gro?e-Hartlage L, Daeschler SC, et al. Acute and long-term costs of 268 peripheral nerve injuries in the upper extremity[J]. PLoS One, 2020, 15(4): e0229530.
[3] Osborne NR, Anastakis DJ, Davis KD. Peripheral nerve injuries, pain, and neuroplasticity[J]. J Hand Ther, 2018, 31(2): 184-194.
[4] Li R, Liu Z, Pan Y, et al. Peripheral nerve injuries treatment: a systematic review[J]. Cell Biochem Biophys, 2014, 68(3): 449-454.
[5] Ward KL, Rodriguez-Collazo ER. Surgical treatment protocol for peripheral nerve dysfunction of the lower extremity: a systematic approach[J]. Clin Podiatr Med Surg, 2021, 38(1): 73-82.
[6] Chen ChQ, Chen LJ. Research progress of traditional chinese medicine in promoting the repair of peripheral nerve injury[J]. Lishizhen Medicine and Materia Medica Research, 2016, 27(9): 2251-2253. (in Chinese)
陈传奇,陈龙菊. 中医药促进周围神经损伤修复的研究进展[J]. 时珍国医国药,2016,27(9):2251-2253.
[7] Ratan ZA, Haidere MF, Hong YH, et al. Pharmacological potential of ginseng and its major component ginsenosides[J]. J Ginseng Res, 2021, 45(2): 199-210.
[8] Yang B, Zhao S, Yan L. The role of ginsenoside Rb1 in bone homeostasis[J]. Curr Stem Cell Res Ther, 2020, 15. DOI:102174/1574888X15666200628141743.
[9] Zheng Q, Bao XY, Zhu PC, et al. Ginsenoside Rb1 for myocardial ischemia/reperfusion injury: preclinical evidence and possible mechanisms[J]. Oxid Med Cell longev, 2017,2017: 6313625.
[10] Zhou P, Xie W, He S, et al. Ginsenoside Rb1 as an anti-diabetic agent and its underlying mechanism analysis[J]. Cells, 2019, 8(3):204.
[11] Li Y, Jiang LY, Lu Di, et al. Ginsenoside Rb1 improving autophagic flux against myocardial ischemia reperfusion injury in isolated-heart of rat[J]. Acta Anatomica Sincia, 2020, 51(2): 265-272. (in Chinese)
李洋,姜永良,陆地,等. 人参皂苷Rb1改善自噬流抗离体大鼠心脏心肌缺血再灌注损伤[J]. 解剖学报, 2020,51(2):265-272.
[12] Chen YS, Wu CH, Yao CH, et al. Ginsenoside Rb1 enhances peripheral nerve regeneration across wide gaps in silicone rubber chambers[J]. Int J Artif Organs, 2002, 25(11): 1103-1108.
[13] Cattin AL, Burden JJ, Van Emmenis L, et al. Macrophage-induced blood vessels guide Schwann cell-mediated regeneration of peripheral nerves[J]. Cell, 2015, 162(5): 1127-1139.
[14] Martini R, Fischer S, López-Vales R, et al. Interactions between Schwann cells and macrophages in injury and inherited demyelinating disease[J]. Glia, 2008, 56(14): 1566-1577.
[15] Jessen KR, Mirsky R. The repair Schwann cell and its function in regenerating nerves[J]. J Physiol, 2016, 594(13): 3521-3531.
[16] Boyd JG, Gordon T. Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury[J]. Mol Neurobiol, 2003, 27(3): 277-324.
[17] Guo WJ, Chen Y. Effect of tetramethylpyrazine on the expression of Sox2 and Egr2 in Schwann cells in mice with sciatic nerve crush injury[J]. Chinese Journal of Clinical Pharmacology, 2016, 32(11): 1017-1020. (in Chinese)
郭文杰,陈焱. 川芎嗪对小鼠坐骨神经损伤后施万细胞Sox2与Egr2表达的影响[J]. 中国临床药理学杂志,2016,32(11):1017-1020.
[18] Li L, Li Y, Fan Z, et al. Ascorbic acid facilitates neural regeneration after sciatic nerve crush injury[J]. Front Cell Neurosci, 2019, 13: 108.
[19] Yao FD, Yang JQ, Huang YC, et al. Antinociceptive effects of Ginsenoside Rb1 in a rat model of cancer-induced bone pain[J]. Exp Ther Med, 2019, 17(5): 3859-3866.
[20] Qu S, Meng X, Liu Y, et al. Ginsenoside Rb1 prevents MPTP-induced changes in hippocampal memory via regulation of the α-synuclein/PSD-95 pathway[J]. Aging (Albany NY), 2019, 11(7): 1934-1964.
[21] DeLeonibus A, Rezaei M, Fahradyan Ⅴ, et al. A meta-analysis of functional outcomes in rat sciatic nerve injury models[J]. Microsurgery, 2021, 41(3): 286-295.
[22] Su WF, Wu F, Jin ZH, et al. Overexpression of P2X4 receptor in Schwann cells promotes motor and sensory functional recovery and remyelination via BDNF secretion after nerve injury[J]. Glia, 2019, 67(1): 78-90.
[23] Sanna MD, Ghelardini C, Galeotti N. HuD-mediated distinct BDNF regulatory pathways promote regeneration after nerve injury[J]. Brain Res, 2017, 1659: 55-63.
[24] Lopes CDF, Gon?alves NP, Gomes CP, et al. BDNF gene delivery mediated by neuron-targeted nanoparticles is neuroprotective in peripheral nerve injury[J]. Biomaterials, 2017, 121: 83-96.
[25] Boissonnas A, Louboutin F, Laviron M, et al. Imaging resident and recruited macrophage contribution to Wallerian degeneration[J]. J Exp Med, 2020, 217(11): e20200471.
[26] Büttner R, Schulz A, Reuter M, et al. Inflammaging impairs peripheral nerve maintenance and regeneration[J]. Aging Cell, 2018, 17(6): e12833.
[27] Barton MJ, John JS, Clarke M, et al. The glia response after peripheral nerve injury: a comparison between schwann cells and olfactory ensheathing cells and their uses for neural regenerative therapies[J]. Int J Mol Sci, 2017, 18(2): 287.
[28] Nocera G, Jacob C. Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury[J]. Cell Mol Life Sci, 2020, 77(20): 3977-3989.
[29] Ronchi G, HaastertTalini K, Fornasari BE, et al. The Neuregulin1/ErbB system is selectively regulated during peripheral nerve degeneration and regeneration[J]. Eur J Neurosci, 2016, 43(3): 351-364.
|