[1]Bhatt JR, Finelli A. Landmarks in the diagnosis and treatment of renal cell carcinoma [J]. Nat Rev Urol, 2014, 11(9): 517-525.
[2]Shuch B, Amin A, Armstrong AJ, et al. Understanding pathologic variants of renal cell carcinoma: distilling therapeutic opportunities from biologic complexity [J]. Eur Urol, 2015, 67(1): 85-97.
[3]Kovacs SB, Miao EA. Gasdermins: effectors of pyroptosis [J]. Trends Cell Biol, 2017, 27(9): 673-684.
[4]Wang XZh,Yu JY,Zhang J, et al. The role of inflammatory response in cell pyrodecay and atherosclerosis. [J].Acta Anatomica Sinica, 2019, 50(4):543-548. (in Chinese)
王熹芝, 袁佳莹, 张剑, 等. 炎症反应在细胞焦亡和动脉粥样硬化之间的作用[J]. 解剖学报, 2019, 50(4): 543-548.
[5]Xia XJ, Wang X, Cheng Z, et al. The role of pyroptosis in cancer: pro-cancer or pro"host" [J]? Cell Death Dis, 2019, 10(9): 650.
[6]Karki R, Kanneganti TD. Diverging inflammasome signals in tumorigenesis and potential targeting [J]. Nat Rev Cancer, 2019, 19(4): 197-214.
[7]Wang B, Yin Q. AIM2 inflammasome activation and regulation: a structural perspective [J]. J Struct Biol, 2017, 200(3): 279-282.
[8]Man SM, Kanneganti TD. Regulation of inflammasome activation [J]. Immunol Rev, 2015, 265(1): 16-21.
[9]Shi J, Zhao Y, Wang Y, et al. Inflammatory caspases are innate immune receptors for intracellular LPS [J]. Nature, 2014, 514(7521): 187-192.
[10]Meng L, Tian Z, Long X, et al. Caspase 4 overexpression as a prognostic marker in clear cell renal cell carcinoma: a study based on the cancer genome atlas data mining [J]. Front Genet, 2020, 11(1): 600248.
[11]Li L, Li Y, Bai Y. Role of GSDMB in pyroptosis and cancer [J]. Cancer Manag Res, 2020, 12(4): 3033-3043.
[12]Chen Q, Shi P, Wang Y, et al. GSDMB promotes non-canonical pyroptosis by enhancing caspase-4 activity [J]. J Mol Cell Biol, 2019, 11(6): 496-508.
[13]Elinav E, Strowig T, Kau AL, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis [J]. Cell, 2011, 145(5): 745-757.
[14]Lugrin J, Martinon F. The AIM2 inflammasome: Sensor of pathogens and cellular perturbations [J]. Immunol Rev, 2018, 281(1): 99-114.
[15]Man SM, Karki R, Kanneganti TD. AIM2 inflammasome in infection, cancer, and autoimmunity: Role in DNA sensing, inflammation, and innate immunity [J]. Eur J Immunol, 2016, 46(2): 269-280.
[16]Butera A, Di Paola M, Pavarini L, et al. Nod2 Deficiency in mice is associated with microbiota variation favouring the expansion of mucosal CD4+ LAP+ Regulatory Cells [J]. Sci Rep, 2018, 8(1): 14241.
[17]Sorbara MT, Ellison LK, Ramjeet M, et al. The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner [J]. Immunity, 2013, 39(5): 858-873.
[18]Cooney R, Baker J, Brain O, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation [J]. Nat Med, 2010, 16(1): 90-97.
[19]Caruso R, Nú?ez G. Innate Immunity: ER Stress Recruits NOD1 and NOD2 for delivery of inflammation [J]. Curr Biol, 2016, 26(12): R508-R511.
[20]Adams CJ, Kopp MC, Larburu N, et al. Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1 [J]. Front Mol Biosci, 2019, 6: 11.
[21]Zangara MT,Johnston I, Johnson EE, et al. Mediators of metabolism: an unconventional Role for NOD1 and NOD2 [J]. Int J Mol Sci, 2021, 22(3): 1156.
[22]Nambayan RJT, Sandin SI, Quint DA, et al. The inflammasome adapter ASC assembles into filaments with integral participation of its two Death Domains, PYD and CARD [J]. J Biol Chem, 2019, 294(2): 439-452.
[23]McConnell BB, Vertino PM. Activation of a caspase-9-mediated apoptotic pathway by subcellular redistribution of the novel caspase recruitment domain protein TMS1 [J]. Cancer Res, 2000, 60(22): 6243-6247.
[24]Mohamed RA, Abdallah DM, El-Brairy AI, et al. Palonosetron/methyllycaconitine deactivate hippocampal microglia 1, inflammasome assembly and pyroptosis to enhance cognition in a novel model of neuroinflammation [J]. Molecules, 2021, 26(16): 5068.
|