[1]. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2018. CA Cancer J Clin, 2018. 68(1): p. 7-30.[2]. Bhatt, J.R. and A. Finelli, Landmarks in the diagnosis and treatment of renal cell carcinoma. Nat Rev Urol, 2014. 11(9): p. 517-25.[3]. Kovacs, G., et al., The Heidelberg classification of renal cell tumours. J Pathol, 1997. 183(2): p. 131-3.[4]. Shuch, B., et al., Understanding pathologic variants of renal cell carcinoma: distilling therapeutic opportunities from biologic complexity. Eur Urol, 2015. 67(1): p. 85-97.[5]. Makhov, P., et al., Resistance to Systemic Therapies in Clear Cell Renal Cell Carcinoma: Mechanisms and Management Strategies. Mol Cancer Ther, 2018. 17(7): p. 1355-1364.[6]. Kovacs, S.B. and E.A. Miao, Gasdermins: Effectors of Pyroptosis. Trends Cell Biol, 2017. 27(9): p. 673-684.[7]. 王熹芝, et al., 炎症反应在细胞焦亡和动脉粥样硬化之间的作用 [J] .解剖学报, 2019. 50(04): p. 543-548.[8]. Frank, D. and J.E. Vince, Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ, 2019. 26(1): p. 99-114.[9]. Ding, J., et al., Pore-forming activity and structural autoinhibition of the gasdermin family. Nature, 2016. 535(7610): p. 111-6.[10]. Xia, X., et al., The role of pyroptosis in cancer: pro-cancer or pro-"host"? Cell Death Dis, 2019. 10(9): p. 650.[11]. Li, L., Y. Li, and Y. Bai, Role of GSDMB in Pyroptosis and Cancer. Cancer Manag Res, 2020. 12: p. 3033-3043.[12]. Burgener, S.S., et al., Cathepsin G Inhibition by Serpinb1 and Serpinb6 Prevents Programmed Necrosis in Neutrophils and Monocytes and Reduces GSDMD-Driven Inflammation. Cell Rep, 2019. 27(12): p. 3646-3656.e5.[13]. Panganiban, R.A., et al., A functional splice variant associated with decreased asthma risk abolishes the ability of gasdermin B to induce epithelial cell pyroptosis. J Allergy Clin Immunol, 2018. 142(5): p. 1469-1478.e2.[14]. Chen, Q., et al., GSDMB promotes non-canonical pyroptosis by enhancing caspase-4 activity. J Mol Cell Biol, 2019. 11(6): p. 496-508.[15]. Garcia, J., N. Callewaert, and L. Borsig, P-selectin mediates metastatic progression through binding to sulfatides on tumor cells. Glycobiology, 2007. 17(2): p. 185-96.[16]. Feng, S., D. Fox, and S.M. Man, Mechanisms of Gasdermin Family Members in Inflammasome Signaling and Cell Death. J Mol Biol, 2018. 430(18 Pt B): p. 3068-3080.[17]. Hergueta-Redondo, M., et al., Gasdermin B expression predicts poor clinical outcome in HER2-positive breast cancer. Oncotarget, 2016. 7(35): p. 56295-56308.[18]. Kim, L.H., et al., Genetic variants of the gasdermin B gene associated with the development of aspirin-exacerbated respiratory diseases. Allergy Asthma Proc, 2017. 38(1): p. 4-12.[19]. S?derman, J., L. Berglind, and S. Almer, Gene Expression-Genotype Analysis Implicates GSDMA, GSDMB, and LRRC3C as Contributors to Inflammatory Bowel Disease Susceptibility. Biomed Res Int, 2015. 2015: p. 834805.[20]. Chu, A.Y., et al., Multiethnic genome-wide meta-analysis of ectopic fat depots identifies loci associated with adipocyte development and differentiation. Nat Genet, 2017. 49(1): p. 125-130.[21]. Levy, M., et al., NLRP6: A Multifaceted Innate Immune Sensor. Trends Immunol, 2017. 38(4): p. 248-260.[22]. Shen, C., et al., Molecular mechanism for NLRP6 inflammasome assembly and activation. Proc Natl Acad Sci U S A, 2019. 116(6): p. 2052-2057.[23]. Elliott, E.I. and F.S. Sutterwala, Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev, 2015. 265(1): p. 35-52.[24]. Elinav, E., et al., NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell, 2011. 145(5): p. 745-57.[25]. Anand, P.K., et al., NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature, 2012. 488(7411): p. 389-93.[26]. Nambayan, R.J.T., et al., The inflammasome adapter ASC assembles into filaments with integral participation of its two Death Domains, PYD and CARD. J Biol Chem, 2019. 294(2): p. 439-452.[27]. McConnell, B.B. and P.M. Vertino, Activation of a caspase-9-mediated apoptotic pathway by subcellular redistribution of the novel caspase recruitment domain protein TMS1. Cancer Res, 2000. 60(22): p. 6243-7.[28]. Mohamed, R.A., et al., Palonosetron/Methyllycaconitine Deactivate Hippocampal Microglia 1, Inflammasome Assembly and Pyroptosis to Enhance Cognition in a Novel Model of Neuroinflammation. Molecules, 2021. 26(16).[29]. Tzeng, T.C., et al., Inflammasome-derived cytokine IL18 suppresses amyloid-induced seizures in Alzheimer-prone mice. Proc Natl Acad Sci U S A, 2018. 115(36): p. 9002-9007.[30]. Xiong, W., X.F. Meng, and C. Zhang, NLRP3 Inflammasome in Metabolic-Associated Kidney Diseases: An Update. Front Immunol, 2021. 12: p. 714340.[31]. Lugrin, J. and F. Martinon, The AIM2 inflammasome: Sensor of pathogens and cellular perturbations. Immunol Rev, 2018. 281(1): p. 99-114.[32]. Man, S.M., R. Karki, and T.D. Kanneganti, AIM2 inflammasome in infection, cancer, and autoimmunity: Role in DNA sensing, inflammation, and innate immunity. Eur J Immunol, 2016. 46(2): p. 269-80.[33]. Wang, B., et al., Immunobiology and structural biology of AIM2 inflammasome. Mol Aspects Med, 2020. 76: p. 100869.[34]. Sharma, B.R., R. Karki, and T.D. Kanneganti, Role of AIM2 inflammasome in inflammatory diseases, cancer and infection. Eur J Immunol, 2019. 49(11): p. 1998-2011.[35]. Ekabe, C.J., et al., The Role of Inflammasome Activation in Early HIV Infection. J Immunol Res, 2021. 2021: p. 1487287.[36]. Ogura, Y., et al., Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem, 2001. 276(7): p. 4812-8.[37]. Butera, A., et al., Nod2 Deficiency in mice is Associated with Microbiota Variation Favouring the Expansion of mucosal CD4+ LAP+ Regulatory Cells. Sci Rep, 2018. 8(1): p. 14241.[38]. Sorbara, M.T., et al., The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner. Immunity, 2013. 39(5): p. 858-73.[39]. Cooney, R., et al., NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med, 2010. 16(1): p. 90-7.[40]. Caruso, R. and G. Nú?ez, Innate Immunity: ER Stress Recruits NOD1 and NOD2 for Delivery of Inflammation. Curr Biol, 2016. 26(12): p. R508-r511.[41]. Adams, C.J., et al., Structure and Molecular Mechanism of ER Stress Signaling by the Unfolded Protein Response Signal Activator IRE1. Front Mol Biosci, 2019. 6: p. 11.[42]. Zangara, M.T., et al., Mediators of Metabolism: An Unconventional Role for NOD1 and NOD2. Int J Mol Sci, 2021. 22(3).[43]. Jacob, F., S. Vernaldi, and T. Maekawa, Evolution and Conservation of Plant NLR Functions. Front Immunol, 2013. 4: p. 297.[44]. Kobayashi, K.S., et al., Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science, 2005. 307(5710): p. 731-4.[45]. Xu, D., et al., NOD2 maybe a biomarker for the survival of kidney cancer patients. Oncotarget, 2017. 8(60): p. 101489-101499. |