[1]Jiao PF, Liu Y, Bi ZhY. Three dimensional digitized dental model with root based on laser scanning and CT data[J]. Chinese Journal of Clinical Anatomy, 2013,31(4):389-392. (in Chinese)
焦培峰, 刘阳, 毕振宇. 基于激光扫描与CT建立带牙根的三维数字化牙颌模型[J]. 中国临床解剖学杂志, 2013,31(4):389-392.
[2]Joshi SV, Rowe PJ. A novel approach for intra-operative shape acquisition of the tibio-femoral joints using 3D laser scanning in computer assisted orthopaedic surgery[J]. Int J Med Robot, 2018,14(1): e1855.
[3]Shamir RR, Freiman M, Joskowicz L, et al. Surface-based facial scan registration in neuronavigation procedures: a clinical study[J]. J Neurosurg, 2009,111(6): 1201-1206.
[4]Chan B, Auyeung J, Rudan JF, et al. Intraoperative application of hand-held structured light scanning: a feasibility study[J]. Int J Comput Assist Radiol Surg, 2016,11(6): 1101-1108.
[5]Zhang J, Zhao X, Chen Z, et al. A review of deep learning-based semantic segmentation for point cloud[J]. IEEE Access, 2019,7: 179118-179133.
[6]Liu YQ, Ao JF. 3D point cloud semantic segmentation based on multi-information deep learning[J]. Laser and Infrared, 2021,51(5): 675-680. (in Chinese)
刘友群, 敖建锋. 基于多信息深度学习的3D点云语义分割[J]. 激光与红外, 2021,51(5): 675-680.
[7]Su H, Maji S, Kalogerakis E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]. Santiago: IEEE International Conference on Computer Vision, 2015.
[8]Lawin FJ, Danelljan M, Tosteberg P, et al. Deep projective 3D semantic segmentation[C]. Ystad:International Conference on Computer Analysis of Images and Patterns (ICCAIP), 2017.
[9]Alonso I, Riazuelo L, Montesano L, et al. 3D-MiniNet: learning a 2D Representation from point clouds for fast and efficient 3D lidar semantic segmentation[J]. IEEE Robotics and Automation Letters, 2020,5(4): 5432-5439.
[10]Maturana D, Scherer S. VoxNet: A 3D convolutional neural network for real-time object recognition[C]. Hamburg: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015.
[11]Zhai ZL, Zhang X, Yao LY. Multi-scale dynamic graph convolution network for point clouds classification[J]. IEEE Access, 2020, (99): 1.
[12]Qi CR, Su H, Mo K, et al. PointNet: deep learning on Point Sets for 3D classification and segmentation[C]. Honolulu : IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
[13]Qi CR, Yi L, Su H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]. Long Beach: Neural Information Processing Systems 30 (NIPS), 2017.
[14]Wang Y, Sun Y, Liu Z, et al. Dynamic graph CNN for learning on Point Clouds[J]. ACM Transactions on Graphics, 2019:38(5):1-12.
[15]Rusu RB, Blodow N, Beetz M. Fast point feature histograms (FPFH) for 3D registration[C]. Kobe: IEEE International Conference on Robotics and Automation, 2009.
[16]Rusu RB, Blodow N, Marton ZC, et al. Aligning Point Cloud Views using Persistent Feature Histograms[C]. Nice: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008.
[17]Liu Y, Yao D, Zhai Z, et al. Fusion of multimoodality image and point cloud for spatial surface registration for knee arthroplasty [J]. Int J Med Robot, 2022,18(5): e2426.
|