[1]Fan J, Watanabe T. Atherosclerosis: known and unknown[J]. Pathol Int, 2022, 72(3):151-160.
[2]Li M, Wang ZW, Fang LJ, et al. Programmed cell death in atherosclerosis and vascular calcification[J]. Cell Death Dis, 2022, 13(5):467.
[3]Shen J, Zhao M, Zhang C, et al. IL-1β in atherosclerotic vascular calcification: from bench to bedside[J]. Int J Biol Sci, 2021, 17(15):4353-4364.
[4]Malik F, Li Z. Non-peptide agonists and positive allosteric modulators of glucagon-like peptide-1 receptors: alternative approaches for treatment of Type 2 diabetes[J]. Br J Pharmacol, 2022, 179(4):511-525.
[5]Ferrari F, Scheffel RS, Martins VM, et al. Glucagon-like peptide-1 receptor agonists in type 2 diabetes mellitus and cardiovascular disease: the past, present, and future[J]. Am J Cardiovasc Drugs, 2022, 22(4):363-383.
[6]Drucker DJ. Mechanisms of action and therapeutic application of glucagon-like peptide-1[J]. Cell Metab, 2018, 27(4):740-756.
[7]Ma X, Liu Z, Ilyas I, et al. GLP-1 receptor agonists (GLP-1RAs): cardiovascular actions and therapeutic potential[J]. Int J Biol Sci, 2021, 17(8):2050-2068.
[8]Pahk K, Joung C, Song HY, et al. SP-8356, a novel inhibitor of CD147-cyclophilin A interactions, reduces plaque progression and stabilizes vulnerable plaques in apoE-deficient mice[J]. Int J Mol Sci, 2019, 21(1):95.
[9]Anandan V, Thulaseedharan T, Suresh Kumar A, et al. Cyclophilin A impairs efferocytosis and accelerates atherosclerosis by overexpressing CD 47 and down-regulating calreticulin[J]. Cells, 2021, 10(12):3598.
[10]Liao Y, Luo D, Peng K, et al. Cyclophilin A: a key player for etiological agent infection[J]. Appl Microbiol Biotechnol, 2021, 105(4):1365-1377.
[11]Zhang GL. Research progress in clinical application of GLP-1 receptor agonist [J]. China Urban and Rural Enterprise Health, 2021,36 (4): 31-34. (in Chinese)
张贵龙.GLP-1受体激动剂临床应用研究进展[J].中国城乡企业卫生,2021,36(4):31-34.
[12]Rakipovski G, Rolin B, NØhr J, et al. The GLP-1 analogs liraglutide and semaglutide reduce atherosclerosis in ApoE-/- and LDLr-/- mice by a mechanism that includes inflammatory pathways[J]. JACC Basic Transl Sci, 2018, 3(6):844-857.
[13]Rizzo M, Nikolic D, Patti AM, et al. GLP-1 receptor agonists and reduction of cardiometabolic risk: potential underlying mechanisms[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(9 Pt B):2814-2821.
[14]Zhang S, Hong F, Ma C, et al. Hepatic lipid metabolism disorder and atherosclerosis[J]. Endocr Metab Immune Disord Drug Targets, 2022, 22(6):590-600.
[15]Wu Y, Johnson G, Zhao F, et al. Features of lipid metabolism in humanized ApoE knockin rat models[J]. Int J Mol Sci, 2021, 22(15):8262.
[16]Villa-Bellosta R. Vascular calcification: key roles of phosphate and pyrophosphate[J]. Int J Mol Sci, 2021, 22(24):13536.
[17]Wang C, Xu W, An J, et al. Poly(ADP-ribose) polymerase 1 accelerates vascular calcification by upregulating Runx2[J]. Nat Commun, 2019, 10(1):1203.
[18]Liu L, Zeng P, Yang X, et al. Inhibition of vascular calcification[J]. Arterioscler Thromb Vasc Biol, 2018, 38(10):2382-2395.
[19]Kozu K, Satoh K, Aoki T, et al. Cyclophilin A as a biomarker for the therapeutic effect of balloon angioplasty in chronic thromboembolic pulmonary hypertension[J]. J Cardiol, 2020, 75(4):415-423.
[20]Chang CS, Su SL, Chang CC, et al. Cyclophilin-A: a novel biomarker for untreated male essential hypertension[J]. Biomarkers, 2013, 18(8):716-720.
[21]Ramachandran S, Kartha CC. Cyclophilin-A: a potential screening marker for vascular disease in type-2 diabetes[J]. Can J Physiol Pharmacol, 2012, 90(8):1005-1015.
[22]Xue C, Sowden M, Berk BC. Extracellular cyclophilin A, especially acetylated, causes pulmonary hypertension by stimulating endothelial apoptosis, redox stress, and inflammation[J]. Arterioscler Thromb Vasc Biol, 2017, 37(6):1138-1146.
[23]Su Z, Lin M, Su Y, et al. Oxidized low-density lipoprotein inhibits the degradation of cyclophilin A via the lysosome in vascular smooth muscle cells[J]. Am J Transl Res, 2020, 12(7):3964-3973.
|