[1] Li H, Shi ZhY, Li RL, et al. Effects of ischemia and hypoxia on DNA methylation in mouse hippocampus[J]. Acta Anatomica Sinica, 2016, 47(3):289-296. (in Chinese)
李红, 石贞玉, 李瑞玲, 等. 缺血、缺氧对小鼠海马DNA甲基化的影响[J]. 解剖学报, 2016, 47(3):289-296.
[2] Smith AL, Alexander M, Rosenkrantz TS, et al. Sex differences in behavioral outcome following neontal hypoxia ischemia: insights from a clinical meta-analysis and a rodent model of induced hypoic ischemic brain injury [J]. Exp Neurol, 2014, 254:54-67.
[3] Wang YM, Lu LQ, Qu Y, et al. Research progress of microRNA and neonatal brain injury[J]. Journal of Chengdu Medical College, 2017, 12(3):137-140. (in Chinese)
王幽梦, 鲁利群, 屈艺. 微小核糖核酸与新生儿脑损伤的研究进展[J]. 成都医学院学报, 2017, 12(3):137-140.
[4] Li P, Li J, Chen T, et al. Expression analysis of serum microRNAs in idiopathic pulmonary fibrosis[J]. Int J Mol Med, 2014, 33(6):1554-1562.
[5] Zhou Q, Jin Y. Research progress of miR-155 and virus infections[J]. Chinese Journal of Experimental and Clinical Virology, 2017, 31(4):379-383. (in Chinese)
周琦, 金玉. miR-155与病毒感染的研究进展[J]. 中华实验和临床病毒学杂志, 2017, 31(4):379-383.
[6] Liu L, Zhang W, Li ZhB, et al. Effect of DAP activated NOD1 signaling pathway on myocardial ischemia/reperfusion injury[J]. Journal of Southeast University(Medical Science Edition), 2018, 37 (4):145-150. (in Chinese)
柳磊, 张武, 李召彬, 等. 二氨基庚二酸激活NOD1信号通路对心肌缺血再灌注损伤的影响[J]. 东南大学学报(医学版), 2018, 37 (4):145-150.
[7] Li YQ, Wang M, Wang L, et al. Effects of permanent ischemia and hypoxia on PC12 cells autophagy [J]. Acta Anatomica Sinica, 2017, 48(3):242-253. (in Chinese)
厉永强, 王萌, 王来, 等. 永久缺血缺氧对PC12细胞自噬的影响[J]. 解剖学报, 2017, 48(3):242-253.
[8] Wu GJ, Wang PP, Zhao LL. Advance in neonatal hypoxic-ischemic brain damage model [J]. Chinese Journal of Rehabilitation Theory and Practice, 2018, 24(11):54-57. (in Chinese)
吴国娇, 王佩佩, 赵玲玲. 新生儿缺氧缺血性脑损伤动物模型的研究进展[J]. 中国康复理论与实践, 2018, 24(11):54-57.
[9] Yan W, Qi XH. MicroRNA-181b regulates hypoxic-ischemic brain damage through TLR4 signaling pathway [J]. China Journal of Modern Medicine, 2018, 28(21):21-27. (in Chinese)
阎雯, 齐薛浩. MicroRNA-181b及Toll样受体4在新生大鼠神经元缺氧缺血损伤中的作用机制研究[J]. 中国现代医学杂志, 2018, 28(21):21-27.
[10] Serdar M, Kempe K, Rizazad M, et al. Early pro-inflammatory microglia activation after inflammation-sensitized hypoxic-ischemic brain injury in neonatal rats [J]. Front Cell Neurosci, 2019, 13:237-249.
[11] Li B, Concepcion K, Meng X, et al. Brain-immune interactions in perinatal hypoxic-ischemic brain injury [J]. Prog Neurobiol, 2017, 159:50-68.
[12] Mi Ch, Li YCh, Ren L, et al. Effect of miRNA-155 in the appendicitis and intestinal immunomodulation[J]. Chinese Journal of Gastroenterology and Hepatology, 2018, 27(6):90-94. (in Chinese)
米琛, 厉英超, 任莉, 等. miRNA-155在阑尾炎及肠道免疫调节中的作用[J]. 胃肠病学和肝病学杂志, 2018, 27(6):90-94.
[13] Dongyan W, Maochun T, Pengfei Z, et al. MiRNA-155 regulates the Th17/Treg ratio by targeting SOCS1 in severe acute pancreatitis [J]. Front Physiol, 2018, 9:686-696.
[14] Han JQ, Lu JJ, Xiang CH, et al. The effect of miRNA-155 in diabetic rats with cerebral ischemic injury[J]. Journal of Apoplexy and Nervous Diseases, 2014, 31(10):900-903. (in Chinese)
韩江全, 卢俊江, 向灿辉, 等. 下调miRNA-155对糖尿病加重脑缺血损伤的影响[J]. 中风与神经疾病杂志, 2014, 31(10):900-903.
[15] Yang QB, Zhou JG. The role of autophagy and Toll-like receptor NOD-like receptor signaling pathway in gout inflammation [J]. Chinese Journal of Rheumatology, 2015, 19(5):349-351. (in Chinese)
杨其彬, 周京国. 自噬与Toll样受体NOD样受体信号通路相互调控在痛风炎症反应中的作用[J]. 中华风湿病学杂志, 2015, 19(5):349-351.
[16] Rivers SL, Klip A, Giacca A. NOD1: an Interface between innate immunity and insulin resistance [J]. Endocrinology, 2019, 160(5):1021-1030.
[17] Takano M, Takeuchi T, Kuriyama S, et al. Role of peptide transporter 2 and MAPK signaling pathways in the innate immune response induced by bacterial peptides in alveolar epithelial cells[J]. Life Sci, 2019, 229:173-179.
[18] Xi J, Yan M, Li S, et al. NOD1 activates autophagy to aggravate hepatic ischemia-reperfusion injury in mice [J]. J Cell Biochem, 2019, 120(6):10605-10612.
[19] Wang JL, Li GY, Mu LN, et al. Protective role of endogenous hydrogen sulfide in ischemic AKI by inhibiting NOD1 signal pathway[J]. Chinese Journal of Kidney Disease Investigation(Electronic Edition), 2017, 6(2):73-78. (in Chinese)
王佳丽, 李光远, 穆丽娜, 等. 内源性硫化氢通过抑制NOD1信号通路在缺血性急性肾损伤中保护作用的研究[J]. 中华肾病研究电子杂志, 2017, 6(2):7-78.
[20] Wu Y, Lin Z, Yan Z, et al. Sinomenine contributes to the inhibition of the inflammatory response and the improvement of osteoarthritis in mouse-cartilage cells by acting on the Nrf2/HO-1 and NF-κB signaling pathways[J]. Int Immunopharmacol, 2019, 75:105715-105726.
[21] Li Q, Xiong YM. Advances in A20 gene and NF-kappa B signaling pathway[J].Foreign Medical Sciences(Section of Medgeography), 2019, 40(1):87-89. (in Chinese)
李强, 熊咏民. A20基因与NF-κB信号通路的研究进展[J]. 国外医学:医学地理分册, 2019, 40(1):87-89.
[22] Fang C, Xie L, Liu C, et al. Tanshinone IIA improves hypoxic ischemic encephalopathy through TLR4mediated NFκB signal pathway [J]. Mol Med Rep, 2018, 18(2):1899-1908.
[23] Chen A, Xu Y, Yuan J. Ginkgolide B ameliorates NLRP3 inflammasome activation after hypoxic-ischemic brain injury in the neonatal male rat[J]. Int J Dev Neurosci, 2018, 69:106-111.
|