[1] Qiu J. China spinal cord injury network: changes from within [J]. Lancet Neurol, 2009, 8 (7): 606-607.
[2] Varma AK, Das A, Wallace G, et al. Spinal cord injury: a review of current therapy, future treatments, and basic science frontiers [J]. Neurochem Res, 2013, 38 (5): 895-905.
[3] Figley SA, Khosravi R, Legasto JM, et al. Characterization of vascular disruption and blood-spinal cord barrier permeability following traumatic spinal cord injury [J]. J Neurotrauma, 2014, 31 (6): 541-552.
[4] Bayless KJ, Johnson GA. Role of the cytoskeleton in formation and maintenance of angiogenic sprouts [J]. J Vasc Res, 2011, 48 (5): 369-385.
[5] Li F, Sawada J, Komatsu M. R-Ras-Akt axis induces endothelial lumenogenesis and regulates the patency of regenerating vasculature [J]. Nat Commun, 2017, 8 (1): 1720.
[6] Sandner B, Puttagunta R, Motsch M, et al. Systemic epothilone D improves hindlimb function after spinal cord contusion injury in rats [J]. Exp Neurol, 2018, 306: 250-259.
[7] Yan JQ, Dai HM. Review of the R&D and technology innovation of epothilone as new drug [J]. Chinese Journal of New Druds, 2012, 21 (19): 2241-2249.(in Chinese)
阎家麒,戴洪明.埃博霉素新药研发与技术创新初探 [J]. 中国新药杂志, 2012, 21 (19): 2241-2249.
[8] Ruschel J, Hellal F, Flynn KC, et al. Axonal regeneration. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury [J]. Science, 2015, 348 (6232): 347-352.
[9] de Forges H, Bouissou A, Perez F. Interplay between microtubule dynamics and intracellular organization [J]. Int J Biochem Cell Biol, 2012, 44 (2): 266-274.
[10] Norden PR, Kim DJ, Barry DM, et al. Cdc42 and k-Ras control endothelial tubulogenesis through apical membrane and cytoskeletal polarization: novel stimulatory roles for GTPase effectors, the small GTPases, Rac2 and Rap1b, and inhibitory influence of arhgap31 and rasa1 [J]. PLoS One, 2016, 11 (1): e0147758.
[11] Sobel, A. Stathmin: a relay phosphoprotein for multiple signal transduction [J]? Trends Biochem Sci, 1991, 16 (8): 301-305.
[12] Hu JY, Chu ZG, Han J, et al. The p38/MAPK pathway regulates microtubule polymerization through phosphorylation of MAP4 and Op18 in hypoxic cells [J]. Cell Mol Life Sci, 2010, 67 (2): 321-333.
[13] Davis GE, Stratman AN, Sacharidoy A, et al. Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting [J]. Int Rev Cell Mol Biol, 2011, 288: 101-165.
[14] Hellstrom M, Gerhardt H, Kalen M, et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis [J]. J Cell Biol, 2001, 153 (3): 543-553.
[15] Li Y, LucasOsma AM, Black S, et al. Pericytes impair capillary blood flow and motor function after chronic spinal cord injury [J]. Nat Med, 2017, 23 (6): 733-741.
[16] Duran CL, Howell DW, Dave JM, et al. Molecular regulation of sprouting angiogenesis [J]. Compr Physiol, 2017, 8 (1): 153-235.
[17] Bowers SL, Norden PR, Davis GE. Molecular signaling pathways controlling vascular tube morphogenesis and pericyte-induced tube maturation in 3D extracellular matrices [J]. Adv Pharmacol, 2016, 77: 241-280.
[18] Thomas M, Augustin HG. The role of the angiopoietins in vascular morphogenesis [J]. Angiogenesis, 2009, 12 (2): 125-137.
[19] Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular unit: key functions and signaling pathways [J]. Nat Neurosci, 2016, 19 (6): 771-783.
[20] Savant S, La Porta S, Budnik A, et al. The Orphan receptor Tie1 controls angiogenesis and vascular remodeling by differentially regulating Tie2 in tip and stalk cells [J]. Cell Rep, 2015, 12 (11): 1761-1773.
|