[1]Malar DS, Prasanth MI, Brimson JM, et al. Neuroprotective properties of green tea (Camellia sinensis) in Parkinson’s disease: a review[J]. Molecules, 2020, 25(17):3926.
[2]Rizek P, Kumar N, Jog MS. An update on the diagnosis and treatment of Parkinson disease[J]. CMAJ, 2016, 188(16):1157-1165.
[3]Nutt JG, Wooten GF. Clinical practice. Diagnosis and initial management of Parkinson’s disease[J]. N Engl J Med, 2005, 353(10):1021-1027.
[4]Sarkar S, Nguyen HM, Malovic E, et al. Kv13 modulates neuroinflammation and neurodegeneration in Parkinson’s disease[J]. J Clin Invest, 2020, 130(8):4195-4212.
[5]Hare SH, Harvey AJ. mTOR function and therapeutic targeting in breast cancer[J]. Am J Cancer Res. 2017;7(3):383-404.
[6]Switon K, Kotulska K, Janusz-Kaminska A, et al. Molecular neurobiology of mTOR[J]. Neuroscience, 2017, 341:112-153.
[7]Chen CJ, Sgritta M, Mays J, et al. Therapeutic inhibition of mTORC2 rescues the behavioral and neurophysiological abnormalities associated with Pten-deficiency[J]. Nat Med, 2019, 25(11):1684-1690.
[8]Pérez-Sisqués L, Solana-Balaguer J, Campoy-Campos G, et al. RTP801/REDD1 is involved in neuroinflammation and modulates cognitive dysfunction in Huntington’s disease[J]. Biomolecules, 2021, 12(1):34.
[9]Jin HO, Hong SE, Kim JH, et al. Sustained overexpression of Redd1 leads to Akt activation involved in cell survival[J]. Cancer Lett, 2013, 336(2):319-324. [10]Britto FA, Dumas K, Giorgetti-Peraldi S,et al. Is REDD1 a metabolic double agent? Lessons from physiology and pathology[J]. Am J Physiol Cell Physiol, 2020, 319(5):C807-C824.
[11]Lu Z, Zhang Y, Xu Y, et al. mTOR inhibitor PP242 increases antitumor activity of sulforaphane by blocking Akt/mTOR pathway in esophageal squamous cell carcinoma[J]. Mol Biol Rep, 2022, 49(1):451-461.
[12]Han EK, Leverson JD, McGonigal T, et al. Akt inhibitor A-443654 induces rapid Akt Ser-473 phosphorylation independent of mTORC1 inhibition[J]. Oncogene, 2007,26(38):5655-5661.
[13]Ponzoni M, Bachetti T, Corrias MV, et al. Recent advances in the developmental origin of neuroblastoma: an overview[J]. J Exp Clin Cancer Res, 2022, 41(1):92.
[14]Xicoy H, Wieringa B, Martens GJ. The SH-SY5Y cell line in Parkinson’s disease research: a systematic review[J]. Mol Neurodegener, 2017, 12(1):10.
[15]Wang TT, Ye X,Bian W, et al. Allopregnanolone modulates GABAAR-dependent CaMKⅡδ3 and BDNF to protect SH-SY5Y cells against 6-OHDA-induced damage[J]. Acta Anatomica Sinica, 2021, 52(1):5-13.(in Chinese)
王彤彤,叶鑫,边维等. 别孕烯醇酮对6-羟基多巴胺损伤的细胞系SH-SY5Y的保护作用[J]. 解剖学报, 2021,52(1):5-13.
[16]Kilo L, Stürner T, Tavosanis G, et al. Drosophila dendritic arborisation neurons: fantastic actin dynamics and where to find them[J]. Cells, 2021, 10(10):2777.
[17]Siuta MA, Robertson SD, Kocalis H, et al. Dysregulation of the norepinephrine transporter sustains cortical hypodopaminergia and schizophrenia-like behaviors in neuronal rictor null mice[J]. PLoS Biol, 2010, 8(6):e1000393.
[18]Urbanska M, Gozdz A, Swiech LJ, et al. Mammalian target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) control the dendritic arbor morphology of hippocampal neurons[J]. J Biol Chem, 2012, 287(36):30240-30256.
[19]Laguesse S, Morisot N, PhamLuong K,et al. mTORC2 in the dorsomedial striatum of mice contributes to alcohol-dependent -Actin polymerization, structural modifications, and consumption[J]. Neuropsychopharmacology, 2018, 43(7):1539-1547.
[20]Johnson JL, Huang W, Roman G, et al. TORC2: a novel target for treating age-associated memory impairment[J]. Sci Rep, 2015, 5: 15193.
[21]Brugarolas J, Lei K, Hurley RL, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex[J]. Genes Dev, 2004, 18(23):2893-2904.
[22]Nagatsu T, Sawada M. Inflammatory process in Parkinson’s disease: role for cytokines[J]. Curr Pharm Des, 2005,11(8):999-1016.
[23]Doorn KJ, Moors T, Drukarch B, et al. Microglial phenotypes and toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson’s disease patients[J]. Acta Neuropathol Commun, 2014, 2:90.
[24]Fan W, Cheng K, Qin X, et al. mTORC1 and mTORC2 play different roles in the functional survival of transplanted adipose-derived stromal cells in hind limb ischemic mice via regulating inflammation in vivo[J]. Stem Cells, 2013, 31(1):203-214.
|