[1] Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J]. Nature, 2012, 485(7397): 201-206.
[2] Zhang Y, Shi MM, He JB, et al. Effects of chronic restraint stress on the expression of N6-methyladenosine and related enzymes in the hippocampus of mice[J]. Acta Anatomica Sinica, 2023, 54(2): 142-148.(in Chinese)
张圆, 时萌萌, 贺嘉贝, 等. 慢性束缚应激对小鼠海马N6-甲基腺苷及相关酶表达的影响[J]. 解剖学报, 2023, 54(2): 142-148.
[3]ShengJ. The mechanism of METTL3 regulating muscle differentiation through Wnt signaling pathway [D]. Wuhan :Wuhan University of Science and Technology,2022. (in Chinese)
盛杰. METTL3通过Wnt信号通路调控肌肉分化的机制研究[D]. 武汉:武汉科技大学,2022.
[4] Yang XR, Ma XH, Du JW, et al. Expression of m6A methylase related genes in bovine skeletal myogenesis [J]. Scientia Agricultura Sinica,2023,56(1):165-178. (in Chinese)
杨昕冉,马鑫浩,杜嘉伟,等.m6A甲基化酶相关基因在牛骨骼肌生成中的表达[J].中国农业科学,2023,56(1):165-178.
[5] Chen W, Chen Y, Wu R, et al. DHA alleviates diet-induced skeletal muscle fiber remodeling via FTO/m6A/DDIT4/PGC1α signaling[J]. BMC Biol, 2022, 20(1): 39.
[6] Mao Y, Jiang F, Xu XJ, et al. Inhibition of IGF2BP1 attenuates renal injury and inflammation by alleviating m6A modifications and E2F1/MIF pathway[J]. Int J Biol Sci, 2023, 19(2): 593-609.
[7] Wei X, Wang J, Sun Y, et al. MiR-222-3p suppresses C2C12 myoblast proliferation and differentiation via the inhibition of IRS-1/PI3K/Akt pathway[J]. J Cell Biochem, 2023,124(9):1379-1390.
[8] Ji S, Ma P, Cao X, et al. Myoblast-derived exosomes promote the repair and regeneration of injured skeletal muscle in mice[J]. FEBS Open Bio, 2022, 12(12): 2213-2226.
[9] Warren GL, Summan M, Gao X, et al. Mechanisms of skeletal muscle injury and repair revealed by gene expression studies in mouse models [J]. J Physiol, 2007, 582(Pt 2):825-841.
[10] Xie SJ, Lei H, Yang B, et al. Dynamic m6A mRNA methylation reveals the role of METTL3/14-m6A-MNK2-ERK signaling axis in skeletal muscle differentiation and regeneration[J]. Front Cell Dev Biol, 2021, 9: 744171.
[11] Diao LT, Xie SJ, Yu PJ, et al. N6-methyladenine demethylase ALKBH1 inhibits the differentiation of skeletal muscle[J]. Exp Cell Res, 2021, 400(2): 112492.
[12] Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA Modifications in gene expression regulation[J]. Cell, 2017, 169(7): 1187-1200.
[13] Wang, Y, Gao, M, Zhu, F, et al. METTL3 is essential for postnatal development of brown adipose tissue and energy expenditure in mice[J]. Nat Commun, 2020, 11(1): 1648.
[14]Gheller BJ, Blum JE, Fong EHH, et al. A defined N6-methyladenosine (m6A) profile conferred by METTL3 regulates muscle stem cell/myoblast state transitions[J]. Cell Death Discov, 2020, 6(1): 95.
[15] Deng K, Fan Y, Liang Y, et al. FTO-mediated demethylation of GADD45B promotes myogenesis through the activation of p38 MAPK pathway[J]. Mol Ther Nucleic Acids, 2021, 26: 34-48.
[16] Liang Y, Han H, Xiong Q, et al. METTL3-mediated m6A methylation regulates muscle stem cells and muscle regeneration by Notch signaling pathway[J]. Stem Cells Int, 2021, 2021: 9955691.
[17] Liu J, Zuo H, Wang Z, et al. The m6A reader YTHDC1 regulates muscle stem cell proliferation via PI4K-Akt-mTOR signalling[J]. Cell Prolif, 2023, 56(8): e13410.
[18] Qiao Y, Sun Q, Chen X, et al. Nuclear m6A reader YTHDC1 promotes muscle stem cell activation/proliferation by regulating mRNA splicing and nuclear export[J]. ELife, 2023, 12: e82703.
[19] Kudou K, Komatsu T, Nogami J, et al. The requirement of Mettl3-promoted MyoD mRNA maintenance in proliferative myoblasts for skeletal muscle differentiation[J]. Open Biol, 2017, 7(9): 170119.
[20] Wang JN, Wang F, Ke J, et al. Inhibition of METTL3 attenuates renal injury and inflammation by alleviating TAB3 m6A modifications via IGF2BP2-dependent mechanisms[J]. Sci Transl Med, 2022, 14(640): eabk2709.
|