解剖学报 ›› 2024, Vol. 55 ›› Issue (3): 334-338.doi: 10.16098/j.issn.0529-1356.2024.03.011

• • 上一篇    下一篇

数字优化设计结合3D打印技术在下胫腓联合损伤中骨隧道建立的应用

李明慧1   熊吉祥  周鑫3,4,5  张磊3,4,5*   

  1. 1.西南医科大学体育学院,四川 泸州   646000; 2.西南医科大学临床医学院,四川 泸州   646000;3.西南医科大学附属中医医院骨伤科,四川 泸州   646000; 4.西南医科大学附属中医医院骨伤疾病研究中心,四川 泸州   646000; 5.骨伤疾病泸州市重点实验室,四川 泸州   646000
  • 收稿日期:2023-09-21 修回日期:2023-11-28 出版日期:2024-06-06 发布日期:2024-06-11
  • 通讯作者: 张磊 E-mail:zhanglei0722@swmu.edu.cn
  • 基金资助:
    2020年国家自然科学基金课题(青年科学基金项目);2022年西南医科大学附属中医医院科研团队培育项目;2023年度四川省中医药管理局中医药科研专项课题面上项目(中医药基础)

Digital optimization design combined with 3D printing technology for bone tunnel creation in distal tibiofibular syndesmosis injury 

LI Ming-hui XIONG Ji-xiang2  ZHOU Xin 3,4,5 ZHANG Lei3,4,5*    

  1. 1.School of Physical Education, Southwest Medical University, Sichuan Luzhou   646000, China; 2.School of Clinical Medicine, Southwest Medical University, Sichuan Luzhou   646000, China; 3.Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan Luzhou   646000, China; 4.Center for Orthopedic Diseases Research, Affiliated Traditional Chinese Medicine Hospitals Southwest Medical University, Sichuan Luzhou   646000, China; 5.Luzhou Key Laboratory of Orthopedic Disorders, Sichuan Luzhou   646000, China
  • Received:2023-09-21 Revised:2023-11-28 Online:2024-06-06 Published:2024-06-11
  • Contact: ZHANG Lei E-mail:zhanglei0722@swmu.edu.cn

摘要:

目的 通过数字优化设计寻找下胫腓联合骨隧道最佳置入位置。 方法 选取西南医科大学附属中医医院95名下胫腓联合损伤患者的100个下胫腓联合CT资料,导入Mimics19.0软件中重建模型。在胫骨和腓骨之间进行虚拟钻孔并设计隧道叠加在重建模型上,作为虚拟模型。此外进行3D打印作为实际模型。分别测量 8个参数,分别为骨隧道长度,胫骨隧道中心到胫骨前、后部的距离,腓外侧隧道中心到腓骨前、后部的距离,骨隧道胫骨侧点到内踝距离,骨隧道腓骨侧点到外踝距离以及骨隧道与水平面间夹角。 结果 比较了虚拟模型和实际模型的8个参数,测量结果间差异均不明显(P>0.05)。在解剖学层面上不同性别结果差异存在统计学意义(P<0.05),受累侧结果差异无明显统计学意义(P>0.05)。 结论 数字优化设计可以为下胫腓联合重建提供精准可靠的骨隧道,从而为手术提供良好的固定,帮助患者尽早恢复踝关节功能。

关键词: 下胫腓联合, 骨隧道, 3D打印, 数字优化设计, 解剖学,

Abstract:

Objective   To employ digital optimization design in the quest for the optimal placement position of the distal tibiofibular syndesmosis tunnel. Methods   A total of 100 distal tibiofibular syndesmosis CT datasets, acquired from 95 patients with syndesmosis injuries the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, were imported into the Mimics 19.0 software for the purpose of reconstructing models. Created virtual tunnels between the tibia and fibula and overlaid them on the reconstructed models as virtual models. Additionally, 3D printing was used to create actual models. In this study, eight parameters were measured. These included the length of the bone tunnel, the distance from the center of the tibial tunnel to the anterior and posterior aspects of the tibia, the distance from the center of the fibular tunnel to the anterior and posterior aspects of the fibula, the distance from the tibial tunnel point to the medial malleolus, the distance from the fibular tunnel point to the lateral malleolus, and the angle between the bone tunnel and the horizontal plane. Results Eight parameters were compared between the virtual model and the actual model, and there was no significant difference in the all measurement results of the actual bone tunnel and the virtual bone tunnel (P>0.05). The anatomical analysis revealed a statistically significant difference in gender (P<0.05), while there was no significant statistical difference observed in the affected side (P>0.05). Conclusion Digital optimization design can provide precise and reliable bone tunnels for elastic fixation of the tibiofibular syndesmosis injury, thereby providing good stability for the surgery and helping patients recover ankle joint function as soon as possible. 

Key words: Tibiofibular syndesmosis, Bone tunnel, 3D printing, Digital optimization design, Anatomy, Human

中图分类号: