[1] Redmann M, Benavides GA, Wani WY, et al. Methods for assessing mitochondrial quality control mechanisms and cellular consequences in cell culture[J]. Redox Biol, 2018, 17: 59-69.
[2] Bozi LH, Bechara LR, dos Santos AF, et al. Mitochondrial-derived vesicles: a new player in cardiac mitochondrial quality control[J]. J Physiol, 2016, 594(21): 6077-6078.
[3] SotoHeredero G, Baixauli F, Mittelbrunn M. Interorganelle communication between mitochondria and the endolysosomal system[J]. Front Cell Dev Biol, 2017, 5: 95.
[4] McLelland GL, Soubannier Ⅴ, Chen CX, et al. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control[J]. EMBO J, 2014, 33(4): 282-295.
[5] Neuspiel M, Schauss AC, Braschi E, et al. Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers[J]. Current Biology, 2008, 18(2): 102-108.
[6] Cadete VJ, Deschênes S, Cuillerier A, et al. Formation of Mitchondrial-derived vesicles is an active and physiologically relevant mitochondrial quality control process in the cardiac system[J]. J Physiol, 2016, 594(18): 5343-5362.
[7] Yamashita A, Fujimoto M, Katayama K, et al. Formation of mitochondrial outer membrane derived protrusions and vesicles in arabidopsis thaliana[J]. PLoS One, 2016, 11(1): e0146717.
[8] Soubannier Ⅴ, McLelland G, Zunino R, et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes[J]. Curr Biol, 2012, 22(2): 135-141.
[9] McLelland GL, Fon EA. Principles of mitochondrial vesicle transport [J]. Curr Opin Physiol, 2018, 3: 25-33.
[10] Vincowa ES, Merrihewb G, Thomas RE, et al. The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo [J]. Proc Nat Acad Sci USA, 2013, 110(16): 6400-6405.
[11] Chan NC, Salazar AM, Pham AH, et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy [J]. Hum Mol Gene, 2011, 20(9): 1726-1737.
[12] Gautier CA, Kitada T, Shen J. Loss of PINK1 causes mitochondrial functional defects[J]. Proc Nat Acad Sci USA, 2008, 105(32): 11364-11369.
[13] Narendra DP, Jin SM, Tanaka A. PINK1 is selectively stabilized on impaired mitochondria to activate parkin[J]. PLoS Biol, 2010, 8(1): e1000298.
[14] Larsen SB, Hanss Z, Krüger R. The genetic architecture of mitochondrial dysfunction in Parkinson’s disease[J]. Cell Tissue Res, 2018, 373(1): 21-37.
[15] Roberts RF, Tang MY, Fon EA, et al. Defending the mitochondria: the pathways of mitophagy and mitochondrial-derived vesicles [J]. Cell Biol, 2016, 79: 427-436.
[16] Sugiura A, McLelland GL, Fon EA, et al. A new pathway for mitochondrial quality control:mitochondrial-derived vesicles[J]. EMBO J, 2014, 33(19): 2142-2156.
[17] Lundmark R, Carlsson SR. SNX9 — a prelude to vesicle release[J]. J Cell Sci, 2009, 122(pt1): 5-11.
[18] Schoneberg J, Lehmann M, Ullrich A, et al. Lipid-mediated PX-BAR domain recruitment couples local membrane constriction to endocytic vesicle fission[J]. Nat Commun, 2017, 8: 15873.
[19] Juhász GA. mitochondrial-derived vesicle HOPS to endolysosomes using Syntaxin-17[J]. J Cell Biol, 2016, 214(3): 241-243.
[20] McLelland GL, Lee SA, Mcbride HM, et al. Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system[J]. J Cell Biol, 2016, 214(3): 275-291.
[21] Andrade-Navarro MA, Sanchez-Pulido L, McBride HM. Mitochondrial vesicles: an ancient process providing new links to peroxisomes [J]. Curr Opin Cell Biol, 2009, 21(4): 560-567.
[22] Braschi E, Goyon V, Zunino R, et al. Vps35 mediates vesicle transport between the mitochondria and peroxisomes[J]. Curr Biol, 2010, 20(14):1310-1315.
[23] Park J, Zhao H, Chang S.The unique mechanism of SNX9 BAR domain for inducing membrane tubulati[J]. Mol Cells, 2014, 37(10): 753-758.
[24] Tang FL, Liu W, Hu JX, et al. VPS35 deficiency or mutation causes dopaminergic neuronal loss by impairing mitochondrial fusion and function[J]. Cell Rep, 2015, 12(10): 1631-1643.
[25] Wang W, Ma X, Zhou L, et al. A conserved retromer sorting motif is essential for mitochondrial DLP1 recycling by VPS35 in Parkinson’s disease model[J]. Hum Mol Genet, 2017, 26(4): 781-789.
[26] Wang W, Wang X, Fujioka H, et al. Parkinson’s disease-associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes[J]. Nat Med, 2016, 22(1): 54-63.
[27] Soubannier V, Rippstein P, Kaufman BA, et al. Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo[J]. PLoS One, 2012, 7(12): e52830.
[28] Motley AM, Hettema EH. Yeast peroxisomes multiply by growth and division[J]. J Cell Biol, 2007, 178(3): 399-410.
[29] Sugiura A, Mattie S, Prudent J. Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes[J]. Nature, 2017, 542(7640): 251-254.
[30] Agrawal G, Subramani S. De novo peroxisome biogenesis: evolving concepts and conundrumS[J]. Biochim Biophys Acta, 2016, 1863(5): 892-901.
[31] Dimitrov L, Lam SK, Schekman R. The role of the endoplasmic reticulum in peroxisome biogenesis[J]. Cold Spring Harb Perspect Biol, 2013, 5(5): a013243.
[32] Hua R, Kim PK. Multiple paths to peroxisomes: mechanism of peroxisome maintenance in mammals[J]. Biochim Biophys Acta, 2016, 1863(5): 881-891.
[33] Hua R, Kim PK. Emerging roles of mitochondria in the evolution, biogenesis, and function of peroxisomes [J]. Front Physiol, 2013, 4: 268.
[34] Schrader M, Costello JL, Godinho LF, et al. Proliferation and fission of peroxisomes - An update[J]. Biochim Biophys Acta, 2016, 1863(5): 971-983.
[35] Schrader M, Pellegrini L. The making of a mammalian peroxisome, version 2.0:mitochondria get into the mix[J]. Cell Death and Differ, 2017, 24(7): 1148-1152.
[36] Matheoud D, Sugiura A, Bellemare-Pelletier A, et al. Parkinson’s disease-related proteins PINK1 and parkin repress mitochondrial antigen presentation[J]. Cell, 2016,166(2): 314-327.
[37] Baden P, Deleidi M. Mitochondrial antigen presentation: a vacuolar path to autoimmunity in parkinson’s disease[J].Trends Immunol, 2016, 37(11): 719-721.
[38] Roberts RF, Fon EA. Presenting mitochondrial antigens: PINK1, Parkin and MDVs steal the show[J]. Cell Res, 2016, 26(11): 1180-1181.
[39] Abuaita BH, Schultz TL, O’Riordan MX. Mitochondria-derived vesicles deliver antimicrobial reactive oxygen species to control phagosome-localized staphylococcus aureus[J]. Cell Host Microbe, 2018, 24(5): 625-636.
[40] Grünewald A, Kumar KR, Sue CM. New insights into the complex role of mitochondria in Parkinson’s disease[J]. Prog Neurobiol, 2019, 177: 73-93.
[41] Yao N, Xun QY. Pathology and impact of the locus ceruleus in Parkinson’s disease[J]. Acta Anatomica Sinica, 2014, 45(2): 291-296. (in Chinese)
姚宁, 徐群渊. 蓝斑核在帕金森病发病中的病理改变及其作用[J]. 解剖学报, 2014, 45(2): 291-296.
[42] Mansouri A, Gattolliat CH, Asselah T. Mitochondrial dysfunction and signaling in chronic liver diseases[J]. Gastroenterology, 2018, 155(3): 629-647.
|