[1]Yin HH, Knowlton BJ, Balleine BW. Inactivation of dorsolateral striatum enhances sensitivity to changes in the action-outcome contingency in instrumental conditioning [J]. Behav Brain Res, 2006, 166(2): 189-196.
[2]van den Bos R. The dorsal striatum and ventral striatum play different roles in the programming of social behaviour: a tribute to Lex Cools [J]. Behav Pharmacol, 2015, 26(1-2):6-17.
[3]Balleine BW, O'Doherty JP. Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action [J]. Neuropsychopharmacology, 2010, 35(1): 48-69.
[4]Dias-Ferreira E, Sousa JC, Melo I, et al. Chronic stress causes frontostriatal reorganization and affects decision-making [J]. Science, 2009, 325(5940): 621-625.
[5]Packard MG. Anxiety, cognition, and habit: a multiple memory systems perspective [J]. Brain Res, 2009, 1293(10):121-128.
[6]Porcelli AJ, Lewis AH, Delgado MR. Acute stress influences neural circuits of reward processing [J]. Front Neurosci, 2012, 6(11):157.
[7]Phelps EA, Lempert KM, Sokol-Hessner P. Emotion and decision making: multiple modulatory neural circuits [J]. Annu Rev Neurosci, 2014, 37:263-287.
[8]Chen Y, Baram TZ. Toward understanding how early-life stress reprograms cognitive and emotional brain networks [J]. Neuropsychopharmacology, 2016, 41(1):197-206.
[9]Ivy AS, Rex CS, Chen Y, et al. Hippocampal dysfunction and cognitive impairments provoked by chronic early-life stress involve excessive activation of CRH receptors [J]. J Neurosci, 2010, 30(39):13005-13015.
[10]Brunson KL, Kramár E, Lin B, et al. Mechanisms of late-onset cognitive decline after early-life stress [J]. J Neurosci, 2005, 25(41):9328-9338.
[11]Rice CJ, Sandman CA, Lenjavi MR, et al. A novel mouse model for acute and long-lasting consequences of early life stress [J]. Endocrinology, 2008, 149(10):4892-4900.
[12]Wang XD, Chen Y, Wolf M, et al. Forebrain CRHR1 deficiency attenuates chronic stress-induced cognitive deficits and dendritic remodelling [J]. Neurobiol Dis, 2011, 42(3):300-310.
[13]Knott GW, Holtmaat A, Wilbrecht L, et al. Spine growth precedes synapse formation in the adult neocortex in vivo [J]. Nat Neurosci, 2006, 9(9):1117-1124.
[14]Xu BK, Sun AB, He Y, et al. The distribution and age-related changes of CRF axon terminals in the developing and adult rat dorsal striatum [J]. Chinese Journal of Neuroanatomy, 2015, 31(4): 497-504. (in Chinese)
许本柯,孙安邦,何云,等. 发育早期和成年大鼠背侧纹状体内CRF轴突终末的分布和变化 [J]. 神经解剖学杂志, 2015, 31(4): 497-504.
[15]Liu H, Han F, Shi YX. Expression of Caspase-12 in cellular apoptosis of hippocampus in the rat model of posttraumatic stress disorder [J]. Acta Anatomica Sinica, 2014, 45(4): 452-456. (in Chinese)
刘虹,韩芳,石玉秀. 创伤后应激障碍大鼠海马神经元凋亡中Caspase-12的表达 [J]. 解剖学报, 2014,45(4): 452-456.
[16]Packard MG, Goodman J. Factors that influence the relative use of multiple memory systems [J]. Hippocampus, 2013, 23(11):1044-1052.
[17]Gasbarri A, Pompili A, Packard MG, et al. Habit learning and memory in mammals: behavioral and neural characteristics [J]. Neurobiol Learn Mem, 2014, 114: 198-208.
[18]Xu BK, Liu BJ, Chen YC. The molecular composition and regulatory proteins of dendritic spines [J]. Anatomy Research, 2013, 35(6): 449-453. (in Chinese)
许本柯,刘本菊,陈运才. 树突棘的分子组成和调节蛋白 [J]. 解剖学研究, 2013,35(6): 449-453.
[19]Chen Y, Andres AL, Frotscher M, et al. Tuning synaptic transmission in the hippocampus by stress: the CRH system [J]. Front Cell Neurosci, 2012, 6(4):13.
[20]Chen Y, Bender RA, Brunson KL, et al. Modulation of dendritic differentiation by corticotropin-releasing factor in the developing hippocampus [J]. Proc Natl Acad Sci USA, 2004, 101(44):15782-15787.
[21]Xu BK, He Y, Chen YC. Current status of stress modulator CRF and dendritic spines [J]. Chinese Journal of Neuroanatomy, 2014, 30(4): 482-484. (in Chinese)
许本柯,何云,陈运才. 应激调节因子CRF与神经元树突棘研究现状 [J]. 神经解剖学杂志, 2014, 30(4): 482-484.
|