[1]Xing YQ, Xu J, Li L, et al. Advances in structure, regulation and target genes of hypoxia inducible factor (HIF-1) [J]. Chinese Journal of Laboratory Diagnosis, 2011,15(1):177-179.(in Chinese)
邢英琦, 徐静, 李琳, 等. 缺氧诱导因子(HIF-1)的结构、调节与靶基因研究进展[J].中国实验诊断学,2011,15(1):177-179.
[2]Favier FB, Britto FA, Freyssenet DG, et al. HIF-1-driven skeletal muscle adaptations to chronic hypoxia: molecular insights into muscle physiology[J]. Cell Mol Life Sci, 2015, 72(24): 4681-4696.
[3]Wang GL, Jiang BH, Rue EA, et al. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension[J]. Proc Natl Acad Sci USA, 1995, 92(12): 5510-5514.
[4]Wang XT, Liu PY, Tang JB. PDGF gene therapy enhances expression of VEGF and bFGF genes and activates the NF-κB gene in signal pathways in ischemic flaps[J]. Plast Reconstr Surg, 2006, 117(1): 129-137.
[5]Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress[J]. Mol cell, 2010, 40(2): 294-309.
[6]Patel SA, Simon MC. Biology of hypoxia-inducible factor-2α in development and disease[J]. Cell Death Differ, 2008, 15(4): 628-634.
[7]Loboda A, Jozkowicz A, Dulak J. HIF-1 and HIF-2 transcription factors—similar but not identical[J]. Mol cells, 2010, 29(5): 435-442.
[8]Lisy K, Peet DJ. Turn me on: regulating HIF transcriptional activity[J]. Cell Death Differ, 2008, 15(4): 642-649.
[9]Kuzmanov A, Wielockx B, Rezaei M, et al. Overexpression of factor inhibiting HIF-1 enhances vessel maturation and tumor growth via platelet-derived growth factor-C[J]. Int J Cancer, 2012, 131(5): E603-E613.
[10]Semenza GL. Hypoxia-inducible factor 1 and cardiovascular disease[J]. Annu Rev Physiol, 2014, 76: 39-56.
[11]Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy[J]. Trends Pharmacol Sci, 2012, 33(4): 207-214.
[12]Levy NS, Levy AP. Adapting to Hypoxia: Lessons from Vascular Endothelial Growth Factor[M]. Anoxia: Springer Netherlands, 2012: 113-128.
[13]Chepelev NL, Willmore WG. Regulation of iron pathways in response to hypoxia[J]. Free Radic Biol Med, 2011, 50(6): 645-666.
[14]Zhang WJ, Wang T, Xiao Y. Progress in copper regulation of hypoxia inducible factor 1 transcriptional activity [J]. Progress in Physiological Sciences, 2016, 47(2): 119-123. (in Chinese)
张文菁, 王韬, 肖颖, 等. 铜调控低氧诱导因子1转录活性的研究进展[J]. 生理科学进展, 2016, 47(2): 119-123.
[15]Manalo DJ, Rowan A, Lavoie T, et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1[J]. Blood, 2005, 105(2): 659-669.
[16]Semenza GL. HIF-1, O2, and the 3 PHDs: how animal cells signal hypoxia to the nucleus[J]. Cell, 2001, 107(1): 1-3.
[17]Semenza GL. HIF-1: upstream and downstream of cancer metabolism[J]. Curr Opin Genet Dev, 2010, 20(1): 51-56.
[18]Liu Y, Cui YG, Mao YD. Hypoxia-inducible factors and their roles in energy metabolism[J].Journal of Medical Postgraduates,2014,(27)5: 542-545. (in Chinese)
柳宇, 崔毓桂, 冒韵东. 缺氧诱导因子在细胞能量代谢中的作用[J]. 医学研究生学报, 2014,(27)5: 542-545.
[19]De Palma S, Ripamonti M, Vigano A, et al. Metabolic modulation induced by chronic hypoxia in rats using a comparative proteomic analysis of skeletal muscle tissue[J]. J Proteome Res, 2007, 6(5): 1974-1984.
[20]Ullah MS, Davies AJ, Halestrap AP. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1α-dependent mechanism[J]. J Biol Chem, 2006, 281(14): 9030-9037.
[21]Regnault TR, Zhao L, Chiu JS, et al. Peroxisome proliferator-activated receptor-β/δ,-γ agonists and resveratrol modulate hypoxia induced changes in nuclear receptor activators of muscle oxidative metabolism[J]. PPAR Res, 2010, 2010:129173.
[22]Slot IG, Schols AM, Vosse BA, et al. Hypoxia differentially regulates muscle oxidative fiber type and metabolism in a HIF-1α-dependent manner[J]. Cell Signal, 2014, 26(9): 1837-1845.
[23]Chaillou T, Koulmann N, Meunier A, et al. Effect of hypoxia exposure on the phenotypic adaptation in remodelling skeletal muscle submitted to functional overload[J]. Acta Physiol (Oxf), 2013, 209(4): 272-282.
[24]Band M, Joel A, Hernandez A, et al. Hypoxia-induced BNIP3 expression and mitophagy: in vivo comparison of the rat and the hypoxia-tolerant mole rat, Spalax ehrenbergi[J]. FASEB J, 2009, 23(7): 2327-2335.
[25]Gamboa JL, Garcia-Cazarin ML, Andrade FH. Chronic hypoxia increases insulin-stimulated glucose uptake in mouse soleus muscle[J]. Am J Physiol Regul Integr Comp Physiol, 2011, 300(1): R85-R91.
[26]De Theije CC, Langen RC, Lamers WH, et al. Distinct responses of protein turnover regulatory pathways in hypoxia-and semistarvation-induced muscle atrophy[J]. Am J Physiol Lung Cell Mol Physiol, 2013, 305(1): L82-L91.
[27]Bellot G, Garcia-Medina R, Gounon P, et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains[J]. Mol Cell Biol, 2009, 29(10): 2570-2581.
[28]Chen R, Dioum EM, Hogg RT, et al. Hypoxia increases sirtuin 1 expression in a hypoxia-inducible factor-dependent manner[J]. Biol Chem, 2011, 286(16): 13869-13878.
[29]Kume S, Uzu T, Horiike K, et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney[J]. J Clin Invest, 2010, 120(4): 1043-1055.
[30]Lokireddy S, Wijesoma IW, Teng S, et al. The ubiquitin ligase mul1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli[J]. Cell Metab, 2012, 16(5): 613-624.
[31]Snyder GK, Farrelly C, Coelho JR. Adaptations in skeletal muscle capillarity following changes in oxygen supply and changes in oxygen demands[J]. Eur J Appl Physiol Occup Physiol, 1992, 65(2): 158-163.
[32]Niemi H, Honkonen K, Korpisalo P, et al. HIF-1α and HIF-2α induce angiogenesis and improve muscle energy recovery[J]. Eur J Clin Invest, 2014, 44(10): 989-999.
[33]Favier FB, Costes F, Defour A, et al. Downregulation of Akt/mammalian target of rapamycin pathway in skeletal muscle is associated with increased REDD1 expression in response to chronic hypoxia[J]. Am J Physiol Regul Integr Comp Physiol, 2010, 298(6): R1659-R1666.
[34]Chaillou T, Koulmann N, Meunier A, et al. Ambient hypoxia enhances the loss of muscle mass after extensive injury[J]. Pflugers Arch, 2014, 466(3): 587-598.
[35]De Theije CC, Langen RC, Lamers WH, et al. Differential sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy[J]. J Appl Physiol (1985), 2015, 118(2): 200-211.
[36]Arthur PG, Giles JJ, Wakeford CM. Protein synthesis during oxygen conformance and severe hypoxia in the mouse muscle cell line C2C12[J]. Biochim Biophys Acta, 2000, 1475(1): 83-89.
[37]Sakagami H, Makino Y, Mizumoto K, et al. Loss of HIF-1α impairs GLUT4 translocation and glucose uptake by the skeletal muscle cells[J]. Am J Physiol Endocrinol Metab, 2014, 306(9): E1065-E1076.
[38]Bagnall J, Leedale J, Taylor SE, et al. Tight control of hypoxia-inducible factor-α transient dynamics is essential for cell survival in hypoxia[J]. J Biol Chem, 2014, 289(9): 5549-5564.
|