[1] Liu L, Wang D, Wong KS, et al. Stroke and stroke care in China: huge burden, significant workload, and a national priority[J]. Stroke, 2011, 42(12):3651-3654.
[2] Wang P, Miao CY. NAMPT as a therapeutic target against stroke[J]. Trends Pharmacol Sci, 2015, 36(12): 891-905.
[3] Sui X, Kong N, Ye L, et al. p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents[J]. Cancer Lett, 2014, 344(2): 174-179.
[4] Raingeaud J, Gupta S, Rogers JS, et al. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine[J]. J Biol Chem, 1995, 270(13):7420-7426.
[5] Cuadrado A, Nebreda AR. Mechanisms and functions of p38 MAPK signalling[J]. Biochem J, 2010, 429(3): 403-417.
[6] Wu DC, Ye W, Che XM, et al. Activation of mitogen activated protein kinases after permanent cerebral artery occlusion in mouse brain[J]. J Cereb Blood Flow Metab, 2000, 20(9): 1320-1330.
[7] Porrini V, Sarnico I, Benarese M, et al. Neuroprotective and anti-apoptotic effects of CSP-1103 in primary cortical neurons exposed to oxygen and glucose deprivation[J]. Int J Mol Sci, 2017, 18(1):184.
[8] Lockhart C. Neuroprotective effect of muscone on glutamate-induced apoptosis in PC12 cells via antioxidant and Ca(2+) antagonism[J]. Neurochem Int, 2014, 70(1):10-21.
[9] Wang CP, Shi YW, Tang M, et al. Isoquercetin ameliorates cerebral impairment in focal ischemia through anti-oxidative, anti-inflammatory, and antiapoptotic effects in primary gulture of rat hippocampal neurons and hippocampal CA1 region of rats[J]. Mol Neurobiol, 2017, 54(3):2126-2142.
[10] Zhang T, Fang S, Wan C, et al. Excess salt exacerbates blood-brain barrier disruption via a p38/MAPK/SGK1-dependent pathway in permanent cerebral ischemia[J]. Sci Rep, 2015, 5:16548.
[11] Xue LX, Xu ZH, Wang JQ, et al. Activin A/Smads signaling pathway negatively regulates oxygen glucoserivation-induced autophagy via suppression of JNK and p38 MAPK pathways in neuronal PC12 cells[J]. Biochem Biophys Res Commun, 2016, 480(3):355-361.
[12] Zhan L, Liu L, Li K, et al. Neuroprotection of hypoxic postconditioning against global cerebral ischemia through influencing posttranslational regulations of heat shock protein 27 in adult rats[J]. Brain Pathol, 2017, 27(6): 822-838.
[13] Guo YL, Xu XL, Li Q, et al. Anti-inflammation effects of picroside 2 in cerebral ischemic injury rats[J]. Behav Brain Funct, 2010, 6(1):43-49.
[14] Li Zh, Li Q, Guo YL, et al.Interference effect of picroside Ⅱ on cerebral ischemia reperfusion injury in rats[J].Acta Anatomica Sinica,2010,41(1):9-12.(in Chinese)
李震, 李琴, 郭云良, 等. 胡黄连苷Ⅱ对大鼠脑缺血再灌注损伤的干预作用[J]. 解剖学报, 2010, 41(1):9-12.
[15] Sugino T, Nozaki K, Takagi Y, et al. Activation ofmitogen-activatedprotein kinases after transient forebrain ischemia in gerbilhippocampus[J]. J Neurosci, 2000, 20 (12):4506-4514.
[16] Wang W, Tang L, Li Y, et al. Biochanin A protects against focal cerebral ischemia/reperfusion in rats via inhibition of p38-mediated inflammatory responses[J]. J Neurol Sci, 2014, 348(1-2): 121-125.
[17] Nito C, Kamada H, Endo H, et al. Role of the p38 mitogen-activated protein kinase/cytosolic phospholipase A2 signaling pathway in bloodbrain barrier disruption after focal cerebral ischemia and reperfusion[J]. J Cereb Blood Flow Metab, 2008, 28(10):1686-1696.
[18] Kishimoto K, Li RC, Zhang J, et al. Cytosolic phospholipase A2 alpha amplifies early cyclooxygenase-2 expression, oxidative stress and MAP kinase phosphorylation after cerebral ischemia in mice[J]. J Neuroinflamm, 2010, 7(1):42.
[19] Wu T, Shi JX, Geng S, et al. The MK2/HuR signaling pathway regulates TNF-α-induced ICAM-1 expression by promoting the stabilization of ICAM-1 mRNA[J]. BMC Pulm Med, 2016, 16(1):84.
[20] Kotlyarov A, Neininger A, Schubert C, et al. MAPKAP kinase 2 is essential for LPS-induced TNF-alpha biosynthesis[J]. Nat Cell Biol, 1999, 1(2):94-97.
[21] Wang X, Xu L, Wang H, et al. Mitogen-activated protein kinase-activated protein (MAPKAP) kinase 2 deficiency protects brain from ischemic injury in mice[J]. J Biol Chem, 2002, 277(46): 43968-43972.
[22] Li Q, Guo YL, Li Zh,et al. The interference of picroside Ⅱon the expressions of Caspase-3 and PARP following cerebral ischemia reperfusion injury in rats[J]. Chinese Pharmacological Bulletin, 2010, 26(3): 342-345. (in Chinese)
李琴, 郭云良, 李震, 等. 胡黄连苷Ⅱ对大鼠脑缺血/再灌注损伤Caspase-3和PARP表达的影响[J]. 中国药理学通报,2010, 26(3): 342-345.
[23] Zhang HY, Zhai L, Wang TT, et al. Picroside Ⅱ exerts a neuroprotective effect by inhibiting the mitochondria cytochrome C cignal pathway following ischemia reperfusion injury in rats[J]. J Mol Neurosci, 2017, 61(2):267-278.
[24] Li S, Wang T, Zhai L, et al. Picroside Ⅱ exerts a neuroprotective effect by inhibiting mPTP permeability and EndoG release after cerebral ischemia/reperfusion injury in rats[J]. J Mol Neurosci, 2018, 64(1):144-155.
[25] Li Sh, Wang TT, Guo YL, et al. Effect of Picroside Ⅱon the expressions of voltage-dependent anion channel 1 after cerebral ischemia reperfusion injury[J]. Chinese Medical Journal, 2017, 98(2):136-142.` (in Chinese)
李珊, 王婷婷, 郭云良, 等. 胡黄连苷Ⅱ对脑缺血再灌注损伤后电压依赖性阴离子通道1表达的影响[J]. 中华医学杂志, 2017, 98(2):136-142.
[26] Zhao L, Guo YL, Li XD, et al. Effect of Picroside Ⅱon neuron specific enolase after cerebral ischemic injury[J]. Chinese Pharmacological Bulletin, 2014, 30(2):192-199. (in Chinese)
赵丽, 郭云良, 李晓丹, 等. 胡黄连苷Ⅱ对脑缺血损伤后神经元特异性烯醇化酶表达的影响[J]. 中国药理学通报, 2014, 30(2):192-199.
[27] Wang TT, Zhai L, Zhang HY, et al. Picroside Ⅱ inhibits the MEK-ERK1/2-COX2 signal pathway to prevent cerebral ischemic injury in rats[J]. J Mol Neurosci, 2015, 57(2):335-351.
[28] Wang TT, Zhai L, Guo YL, et al. Picroside Ⅱ has a neuroprotective effect by inhibiting ERK1/2 activation after cerebral ischemic injury in rats[J]. Clin Exp Pharmacol Physiol, 2015, 42(7):930-939.
|