[1] Molina JR, Yang P, Cassivi SD, et al. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship[J]. Mayo Clin Proc, 2008, 83(5):584-594.
[2] Eggert JA, Palavanzadeh M, Blanton A. Screening and early detection of lung Cancer[J]. Semin Oncol Nurs, 2017, 33(2):129-140.
[3] Manoochehri Khoshinani H, Afshar S, Najafi R. Hypoxia: a double-edged sword in cancer therapy[J]. Cancer Invest, 2016, 34(10): 536-545.
[4] Yang J, Ren B, Yang G, et al. The enhancement of glycolysis regulates pancreatic cancer metastasis[J]. Cell Mol Life Sci, 2020, 77(2):305-321.
[5] Nedeljkovic'M, Damjanovic' A. Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge[J]. Cells, 2019, 8(9):957.
[6] Riera-Domingo C, Audigé A, Granja S, et al. Immunity, hypoxia and metabolism-the ménage à trois of cancer: implications for immunotherapy[J]. Physiol Rev, 2020, 100(1):1-102.
[7] Popper HH. Progression and metastasis of lung cancer[J]. Cancer Metastasis Rev, 2016, 35(1):75-91.
[8] Furuta E, Okuda H, Kobayashi A, et al. Metabolic genes in cancer: their roles in tumor progression and clinical implications[J]. Biochim Biophys Acta, 2010, 1805(2):141-152.
[9] Sormendi S, Wielockx B. Hypoxia pathway proteins as central mediators of metabolism in the tumor cells and their microenvironment[J]. Front Immunol, 2018, 9:1.
[10] Lewis CA, Brault C, Peck B, et al. SREBP maintains lipid biosynthesis and viability of cancer cells under lipid- and oxygen-0deprived conditions and defines a gene signature associated with poor survival in glioblastoma multiforme[J]. Oncogene, 2015, 34(40):5128-5140.
[11] Svensson RU, Parker SJ, Eichner LJ, et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models[J]. Nat Med, 2016, 22(10):1108-1119.
[12] McGuirk S, Audet-Delage Y, St-Pierre J. Metabolic fitness and plasticity in cancer progression[J]. Trends Cancer, 2020, 6(1):49-61.
[13] Eltzschig HK, Carmeliet P. Hypoxia and inflammation[J]. N Engl J Med, 2011, 364(7):656-665.
[14] Tlsty TD, Coussens LM. Tumor stroma and regulation of cancer development[J]. Annu Rev Pathol, 2006, 1(1):119-150.
[15] H?ckel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects[J]. J Natl Cancer Inst, 2001, 93(4):266-276.
[16] Le QT, Chen E, Salim A, et al. An evaluation of tumor oxygenation and gene expression in patients with early stage non-small cell lung cancers[J]. Clin Cancer Res, 2006, 12(5):1507-1514.
[17] Song YQ, Zhou BJ. Recent progress on the mechanism of energy metabolism of hypoxia-inducible factor 1-driven skeletal muscle adaptations to hypoxia[J]. Acta Anatomica Sinica, 2017, 48(2):236-240. (in Chinese)
宋亚琼,周播江.低氧诱导因子-1在调控骨骼肌缺氧时能量代谢发生适应性变化的机制研究进展[J]. 解剖学报, 2017, 48(2):236-240.
[18] Zuo J, Wen J, Lei M, et al. Hypoxia promotes the invasion and metastasis of laryngeal cancer cells via EMT[J]. Med Oncol, 2016, 33(2):15.
[19] Hunkeler M, Hagmann A, Stuttfeld E, et al. Structural basis for regulation of human acetyl-CoA carboxylase[J]. Nature, 2018, 558(7710):470-474.
[20] Li Z, Zhang H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression[J]. Cell Mol Life Sci, 2016, 73(2):377-392.
[21] Currie E, Schulze A, Zechner R, er al. Cellular fatty acid metabolism and cancer[J]. Cell Metab, 2013, 18(2):153-161.
[22] R?hrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer[J]. Nat Rev Cancer, 2016, 16(11):732-749.
[23] Corbet C, Feron O. Emerging roles of lipid metabolism in cancer progression[J]. Curr Opin Clin Nutr Metab Care, 2017, 20(4):254-260.
|