[1]Kuhlmann T, Moccia M, Coetzee T, et al. Multiple sclerosis progression: time for a new mechanism-driven framework [J]. Lancet Neurol, 2023, 22(1): 78-88.
[2]Serafini B, Rosicarelli B, Magliozzi R, et al. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis [J]. Brain Pathol, 2004, 14(2): 164-174.
[3]Magliozzi R, Howell O, Vora A, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology [J]. Brain, 2007, 130(Pt 4): 10891104.
[4]Serafini B, Rosicarelli B, Franciotta D, et al. Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain [J]. J Exp Med, 2007, 204(12): 2899-2912.
[5]Frischer JM, Bramow S, Dal-Bianco A, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains [J]. Brain, 2009,132(Pt 5): 1175-1189.
[6]Magliozzi R, Howell OW, Reeves C, et al. A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis [J]. Ann Neurol, 2010, 68(4): 477-493.
[7]Serafini B, Severa M, Columba-Cabezas S, et al. Epstein-Barr virus latent infection and BAFF expression in B cells in the multiple sclerosis brain: implications for viral persistence and intrathecal B-cell activation [J]. J Neuropathol Exp Neurol, 2010, 69(7): 677-693.
[8]Howell OW, Reeves CA, Nicholas R, et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis [J]. Brain,2011, 134(Pt 9): 2755-2771.
[9]Magliozzi R, Serafini B, Rosicarelli B, et al. B-cell enrichment and Epstein-Barr virus infection in inflammatory cortical lesions in secondary progressive multiple sclerosis [J]. J Neuropathol Exp Neurol, 2013, 72(1): 29-41.
[10]Howell OW, Schulz-Trieglaff EK, Carassiti D, et al. Extensive grey matter pathology in the cerebellum in multiple sclerosis is linked to inflammation in the subarachnoid space [J]. Neuropathol Appl Neurobiol, 2015, 41(6): 798-813.
[11]Serafini B, Rosicarelli B, Veroni C, et al. RORγt expression and lymphoid neogenesis in the brain of patients with secondary progressive multiple sclerosis [J]. J Neuropathol Exp Neurol,2016, 75(9): 877-888.
[12]Bell L, Lenhart A, Rosenwald A, et al. Lymphoid aggregates in the CNS of progressive multiple sclerosis patients lack regulatory T cells [J]. Front Immunol, 2020, 10: 3090.
[13]Reali C, Magliozzi R, Roncaroli F, et al. B cell rich meningeal inflammation associates with increased spinal cord pathology in multiple sclerosis [J]. Brain Pathol, 2020, 30(4): 779-793.
[14]Bevan RJ, Evans R, Griffiths L, et al. Meningeal inflammation and cortical demyelination in acute multiple sclerosis [J]. Ann Neurol, 2018, 84(6): 829-842.
[15]Kee R, Naughton M, McDonnell GV, et al. A review of compartmentalised inflammation and tertiary lymphoid structures in the pathophysiology of multiple sclerosis [J]. Biomedicines, 2022, 10(10): 2604.
[16]Sato Y, Silina K, van den Broek M, et al. The roles of tertiary lymphoid structures in chronic diseases [J]. Nat Rev Nephrol, 2023, 19(8): 525-537.
[17]Schumacher TN, Thommen DS. Tertiary lymphoid structures in Cancer [J]. Science, 2022, 375(6576): eabf9419.
[18]Victora GD, Nussenzweig MC. Germinal centers [J]. Annu Rev Immunol, 2022, 40: 413-442.
[19]Barone F, Nayar S, Campos J, et al. IL-22 regulates lymphoid chemokine production and assembly of tertiary lymphoid organs [J]. Proc Natl Acad Sci USA. 2015, 112(35): 11024-11029.
[20]Schropp V, Rohde J, Rovituso DM, et al. Contribution of LTi and TH17 cells to B cell aggregate formation in the central nervous system in a mouse model of multiple sclerosis [J]. J Neuroinflammation, 2019, 16(1): 111.
[21]Fitzgerald DC, Zhang GX, El-Behi M, et al. Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27-stimulated T cells [J]. Nat Immunol, 2007, 8(12): 1372-1379.
[22]Vanderkerken M, Baptista AP, De Giovanni M, et al. ILC3s control splenic cDC homeostasis via lymphotoxin signaling [J]. J Exp Med, 2021, 218(5): e20190835.
[23]Molnarfi N, Schulze-Topphoff U, Weber MS, et al. MHC class II-dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies [J]. J Exp Med, 2013, 210(13): 2921-2937.
[24]Lochner M, Ohnmacht C, Presley L, et al. Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORgamma t and LTi cells [J]. J Exp Med, 2011, 208(1): 125-134.
[25]Pikor NB, Astarita JL, Summers-Deluca L, et al. Integration of Th17- and lymphotoxin-derived signals initiates meningeal-resident stromal cell remodeling to propagate Neuroinflammation [J]. Immunity, 2015, 43(6): 1160-1173.
[26]Wieseler-Frank J, Jekich BM, Mahoney JH, et al. A novel immune-to-CNS communication pathway: cells of the meninges surrounding the spinal cord CSF space produce proinflammatory cytokines in response to an inflammatory stimulus [J]. Brain Behav Immun, 2007, 21(5): 711-718.
[27]Cui ZhJ, Liu F, Zhao KB, et al. Brain barrier structure of APPSWE Tg2576 mice [J]. Acta Anatomica Sinica, 2018, 49(5): 571-578. (in Chinese)
崔占军,刘芳,赵凯冰,等. APPSWE Tg2576小鼠脑屏障结构[J]. 解剖学报, 2018, 49(5): 571-578.
[28]Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels [J]. Nature, 2015, 523(7560): 337-341.
[29]Da Mesquita S, Papadopoulos Z, Dykstra T, et al. Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy [J]. Nature, 2021, 593(7858): 255-260.
[30]Rodríguez Murúa S, Farez MF, Quintana FJ. The immune response in multiple sclerosis [J]. Annu Rev Pathol, 2022, 17: 121-139.
[31]Leech S, Kirk J, Plumb J, and McQuaid S. Persistent endothelial abnormalities and blood-brain barrier leak in primary and secondary progressive multiple sclerosis [J]. Neuropathol Appl Neurobiol, 2007, 33(1): 86-98.
[32]Zivadinov R, Ramasamy DP, Vaneckova M, et al. Leptomeningeal contrast enhancement is associated with progression of cortical atrophy in MS: a retrospective, pilot, observational longitudinal study [J]. Mult Scler, 2017, 23(10): 1336-1345.
[33]Magliozzi R, Howell OW, Nicholas R, et al. Inflammatory intrathecal profiles and cortical damage in multiple sclerosis [J]. Ann Neurol, 2018, 83(4): 739-755.
[34]DeLuca J, Chiaravalloti ND, Sandroff BM. Treatment and management of cognitive dysfunction in patients with multiple sclerosis [J]. Nat Rev Neurol, 2020, 16(6): 319-332.
[35]Hauser SL, Bar-Or A, Weber MS, et al. Association of higher ocrelizumab exposure with reduced disability progression in multiple sclerosis [J]. Neurol Neuroimmunol Neuroinflamm, 2023, 10(2): e200094.
[36]Starke L, Millward JM, Prinz C, et al. First in vivo fluorine-19 magnetic resonance imaging of the multiple sclerosis drug Siponimod [J]. Theranostics, 2023, 13(4): 1217-1234.
[37]Brand RM, Diddens J, Friedrich V, et al. Siponimod inhibits the formation of meningeal ectopic lymphoid tissue in experimental autoimmune encephalomyelitis [J]. Neurol Neuroimmunol Neuroinflamm, 2021, 9(1): e1117.
[38]Montalban X, Arnold DL, Weber MS, et al. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis [J]. N Engl J Med, 2019, 380(25): 2406-2417.
[39]Dolgin E. BTK blockers make headway in multiple sclerosis [J]. Nat Biotechnol, 2021, 39(1): 3-5.
[40]Bhargava P, Kim S, Reyes AA, et al. Imaging meningeal inflammation in CNS autoimmunity identifies a therapeutic role for BTK inhibition [J]. Brain, 2021, 144(5): 1396-1408.
|