[1]Wade M, Li Y-C, Wahl GM. MDM2, MDMX and p53 in oncogenesis and cancer therapy[J]. Nature Reviews Cancer, 2013, 13(2):83-96.
[2]Retzlaff M, Rohrberg J, Küpper NJ, et al. The regulatory domain stabilizes the p53 tetramer by intersubunit contacts with the DNA binding domain[J]. J Mol Biol,2013, 425(1,9):144-155.[3]Kim YY, Park BJ, Kim DJ, et al. Modification of serine 392 is a critical event in the regulation of p53 nuclear export and stability[J]. FEBS Letters, 2004, 572(1):92-98.
[4]Loughery J, Meek D. Switching on p53: an essential role for protein phosphorylation[J]. Bio Discov, 2013, 8(1):1-20.
[5]Ashcroft M, Kubbutat MH, Vousden KH. Regulation of p53 function and stability by phosphorylation[J]. Mol Cell Biol, 1999, 19(3):1751-1758.
[6]Thompson T, Tovar C, Yang H, et al. Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis[J]. J Biol Chem, 2004, 279(51):53015-53022.
[7]Hao M, Lowy AM, Kapoor MD, et al. Mutation of phosphoserine 389 affects p53 function in vivo[J]. J Biol Chem, 1996, 271(46):29380-29385.
[8]Muller PA, Vousden KH. p53 mutations in cancer[J]. Nat Cell Biol, 2013, 15(1):2-8.
[9]Li HZh, Yu K,Wang ZM,et al.The relationships between parameters of cell kinetics and expression, mutation of related genes in breast cancer[J]. Acta Anatomica Sinica, 2003, 34(4): 390-394. (in Chinese)
李红智, 俞康,王宗敏,等.乳腺癌细胞动力学指标与相关基因表达、突变的关系[J]. 解剖学报, 2003, 34(4): 390-394.
[10]Yap DBS, Hsieh JK, Zhong S, et al.Ser392 phosphorylation regulates the oncogenic function of mutant p53[J]. Cancer Research, 2004, 64(14):4749-4754.
[11]Gillotin S, Yap D, Lu X. Mutation at Ser392 specifically sensitizes mutant p53H175 to mdm2mediated degradation[J]. Cell Cycle, 2010, 9(7):1390-1398.
[12]Fan G, Ma X, Wong P, et al. p53 dephosphorylation and p21Cip1/Waf1 translocation correlate with caspase-3 activation in TGF-β1-induced apoptosis of HuH7 cells[J]. Apoptosis, 2004, 9(2):211-221.
[13]Cox ML, Meek DW. Phosphorylation of serine 392 in p53 is a common and integral event during p53 induction by diverse stimuli[J]. Cell Signal, 2010, 22(3):564-571.
[14]Blaydes JP, Hupp TR. DNA damage triggers DRB-resistant phosphorylation of human p53 at the CK2 site[J]. Oncogene, 1998, 17(8):1045-1052.
[15]Bode AM, Dong Z. Post-translational modification of p53 in tumorigenesis[J]. Nat Rev Cancer, 2004, 4(10):793-805.
[16]Meek DW. Multisite phosphorylation and the integration of stress signals at p53[J]. Cell Signal, 1998, 10(3):159-166.
[17]Lew QJ, Chia YL, Chu KL, et al.Identification of HEXIM1 as a positive regulator of p53[J]. J Biol Chem, 2012, 287(43):36443-36454.
[18]Lew QJ, Chu KL, Chia YL, et al. HEXIM1, a new player in the p53 pathway[J]. Cancers, 2013, 5(3):838-856.
[19]Matsumoto M, Furihata M, Kurabayashi A, et al. Prognostic significance of serine 392 phosphorylation in overexpressed p53 protein in human esophageal squamous cell carcinoma[J]. Oncology, 2004, 67(2):143-150.
[20]Bar JK, Slomska I, Rabczynki J, et al. Expression of p53 protein phosphorylated at serine 20 and serine 392 in malignant and benign ovarian neoplasms: correlation with clinicopathological parameters of tumors[J]. Int J Gynecol Cancer, 2009, 19(8):1322-1328.
[21]Kapoor NR, Ahuja R, Shukla SK, et al. The HBx protein of hepatitis B virus confers resistance against nucleolar stress and anti-cancer drug-induced p53 expression[J]. FEBS Letters, 2013, 587(9):1287-1292.
[22]Kofod-Olsen E, M?ller JM, Schleimann MH, et al. Inhibition of p53-dependent, but not p53-independent, cell death by U19 protein from human herpesvirus 6B[J]. PloS One, 2013, 8(3):e59223.
[23]Pise-Masison CA, Radonovich M, Sakaguchi K, et al. Phosphorylation of p53: a novel pathway for p53 inactivation in human T-cell lymphotropic virus type 1-transformed cells[J]. J Virol, 1998, 72(8):6348-6355.
[24]Mukerjee R, Claudio PP, Chang JR, et al. Transcriptional regulation of HIV-1 gene expression by p53[J]. Cell Cycle, 2010, 9(22):4569-4578.
[25]Zhang J, Biggar KK, Storey KB. Regulation of p53 by reversible post-transcriptional and post-translational mechanisms in liver and skeletal muscle of an anoxia tolerant turtle, Trachemys scripta elegans [J]. Gene, 2013, 513(1):147-155.
[26]Aboudehen K, Hilliard S, Saifudeen Z, et al. Mechanisms of p53 activation and physiological relevance in the developing kidney[J]. Am J Physiol Renal Physiol, 2012, 302(8):928-940.
[27]Flores-López LA, Díaz-Flores M, García-Macedo R, et al. High glucose induces mitochondrial p53 phosphorylation by p38 MAPK in pancreatic RINm5F cells[J]. Molecular Biol Rep, 2013, 40(8):4947-4958.
|