[1] Wang HJ, Tan YZh. Lymphangiogenesis and significance in pathogenesis and treatment of the related diseases[J]. Acta Anatomica Sinica, 2007, 38(2): 250-252. (in Chinese)
王海杰,谭玉珍.淋巴管新生及其在疾病发生和治疗中的意义[J].解剖学报,2007,38(2):250-252.
[2] Aspelund A, Robciuc MR, Karaman S, et al. Lymphatic system in cardiovascular medicine[J]. Circ Res, 2016, 118(3): 515-530.
[3] Norman S, Riley PR. Anatomy and development of the cardiac lymphatic vasculature: its role in injury and disease[J]. Clin Ana, 2016, 29(3): 305-315.
[4] Loukas M, Abel N, Shane Tubbs R, et al. The cardiac lymphatic system[J]. Clin Anat, 2011, 24(6): 684-691.
[5] Wang HJ, Tan YZh. Practical Anatomy of the Heart[M]. Shanghai: Fudan University Press, 2007: 134-136. (in Chinese)
王海杰,谭玉珍.实用心脏解剖学[M].上海:复旦大学出版社,2007:134-136.
[6] Huang LH, Lavine KJ, Randolph GJ. Cardiac lymphatic vessels, transport, and healing of the infarcted heart[J]. JACC, 2017, 2(4): 477-483.
[7] Miller AJ. The grossly invisible and generally ignored lymphatics of the mammalian heart[J]. Med Hypotheses, 2011, 76(4): 604-606.
[8] Kong XQ, Wang LX, Kong DG. Cardiac lymphatic interruption is a major cause for allograft failure after cardiac transplantation[J]. Lympha Res Biol, 2007, 5(1): 45-47.
[9] Lupinski RW. Aortic fat pad and atrial fibrillation: cardiac lymphatics revisited[J]. ANZ J Surg, 2009, 79(12): 70-74.
[10] Frangogiannis NG. Regulation of the inflammatory response in cardiac repair[J]. Circ Res, 2012, 110 (1): 159-173.
[11] Vieira JM, Norman S, Villa Del Campo C, et al. The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction[J]. J Clin Invest, 2018, 128(8): 3402-3412.
[12] Feola M, Lefer AM. Alterations in cardiac lymph dynamics in acute myocardial ischemia in dogs[J]. J Surg Res, 1977, 23(5): 299-305.
[13] Henri O, Pouehe C, Houssari M, et al. Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction[J]. Circulation, 2016, 133(15): 1484-1497.
[14] Kholová I, Dragneva G, Cermáková P, et al. Lymphatic vasculature is increased in heart valves, ischaemic and inflamed hearts and in cholesterolrich and calcified atherosclerotic lesions[J]. Eur J Clin Invest, 2011, 41(5): 487-497.
[15] Klotz L, Norman S, Vieira JM, et al. Cardiac lymphatics are heterogeneous in origin and respond to injury[J]. Nature, 2015, 522: 62-67.
[16] Ishikawa Y, Akishima-Fukasawa Y, Ito K, et al. Lymphangiogenesis in myocardial remodelling after infarction[J]. Histopathology, 2007, 51(3): 345-353.
[17] Vuorio T, Nurmi H, Moulton K, et al. Lymphatic vessel insufficiency in hypercholesterolemic mice alters lipoprotein levels and promotes atherogenesis[J]. Arterioscler Thromb Vasc Biol, 2014, 34(6): 1162-1170.
[18] Wang QL, Wang HJ, Li ZH, et al. Mesenchymal stem cell-loaded cardiac patch promotes epicardial activation and repair of the infarcted myocardium[J]. J Cell Mol Med, 2017, 21(9): 1751-1766.
[19] Trincot CE, Xu W, Zhang H, et al. Adrenomedullin induces cardiac lymphangiogenesis after myocardial infarction and regulates cardiac edema via connexin 43[J]. Circ Res, 2019, 124(1): 101-113.
[20] Shimizu Y, Polavarapu R, Eskla KL, et al. Impact of lymphangiogenesis on cardiac remodeling after ischemia and reperfusion injury[J]. J Am Heart Assoc, 2018, 7(19): e009565.
[21] Zhang HF, Wang YL, Tan YZ, et al. Enhancement of cardiac lymphangiogenesis by transplantation of CD34+VEGFR-3+ endothelial progenitor cells and sustained release of VEGFC[J]. Basic Res Cardiol, 2019, 114:43.
[22] Karaman S, Leppanen VM, Alitalo K. Vascular endothelial growth factor signaling in development and disease[J]. Development, 2018, 145(14): dev151019.
[23] Cao R, Eriksson A, Kubo H, et al. Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability[J]. Circ Res, 2004, 94(5): 664-670.
[24] Kazenwadel J, Harvey NL. Lymphatic endothelial progenitor cells: origins and roles in lymphangiogenesis[J]. Curr Opin Immunol, 2018, 53: 81-87.
[25] Cimini M, Cannata A, Pasquinelli G, et al. Phenotypically heterogeneous podoplanin-expressing cell populations are associated with the lymphatic vessel growth and fibrogenic responses in the acutely and chronically infarcted myocardium[J]. PLoS One, 2017, 12(3): e0173927.
[26] Tan YZ, Wang HJ, Zhang MH, et al. CD34+VEGFR-3+ progenitor cells have a potential to differentiate towards lymphatic endothelial cells[J]. J Cell Mol Med, 2014, 18 (3): 422-433.
[27] Zhang MH, Wang HJ, Tan YZh, et al. Differentiation and biological characteristics of the lymphatic endothelial progenitor cells isolated from umbilical cord blood[J]. Acta Anatomica Sinica, 2006, 37(4): 473-478. (in Chinese)
张美华,王海杰,谭玉珍,等.人脐带血淋巴管内皮祖细胞的分化及其生物学特征[J].解剖学报,2006,37(4):473-478.
[28] Wang GD, Tan YZ, Wang HJ, et al. Autophagy promotes degradation of polyethyleneiminealginate nanoparticles in endothelial progenitor cells[J]. Int J Nanomed, 2017, 12: 6661-6675.
[29] Liu R, Tan YZh, Wang HJ, et al. Sorling of lymphatic endothelial progenitor cells from canine peripheral blood and their differentiation induction towards endothelial cell[J]. Chinese Journal of Hematology, 2007, 28(3): 169-173. (in Chinese)
刘锐,谭玉珍,王海杰,等.犬外周血淋巴管内皮祖细胞的分选及其向内皮细胞的诱导分化研究[J].中华血液学杂志,2007,28(3):169-173.
[30] Ao H, Tan YZh, Wang HJ, et al. Release of soluble VEGFR-3 from lymphatic endothelial progenitor cells after gene transfection[J]. Acta Laboratorium Animalis Scientia Sinica, 2009, 17(4): 252-257. (in Chinese)
敖红,谭玉珍,王海杰,等.VEGFR3基因转染淋巴管内皮祖细胞后可溶性VEGFR-3蛋白的分泌[J].中国实验动物学报,2009,17(4):252-257.
[31] Li T, Wang GD, Tan YZ, et al. Inhibition of lymphangiogenesis of endothelial progenitor cells with VEGFR-3 siRNA delivered with PEI-alginate nanoparticles[J]. Int J Biol Sci, 2014, 10(2): 160-170.
[32] Pascual-Gil S, Garbayo E, Díaz-Herráez P, et al. Heart regeneration after myocardial infarction using synthetic biomaterials[J]. J Control Release, 2015, 203:23-38.
[33] Alitalo K. The lymphatic vasculature in disease[J]. Nat Med, 2011, 17(11): 1371-1380.
[34] Wang HJ, Tan YZ, Pober JS. The architecture of the lymphatic vessels in the tissues revealed with whole-mount immunostaining[J]. Acta Anatomica Sinica, 2016, 47(3): 421-424. (in Chinese)
王海杰,谭玉珍,Pober JS.整片组织免疫染色显示淋巴管构筑[J].解剖学报,2016,47(3):421-424.
[35] Vuorio T, Tirronen A, Ylä-Herttuala S. Cardiac lymphatics-A new avenue for therapeutics[J]. Trends Endocrinol Metab, 2017, 28(4): 285-296.
|