[1] Liu S, Romano V, Steger B, et al. Gene-based antiangiogenic applications for corneal neovascularization[J]. Surv Ophthalmol, 2018, 63(2):193-213.
[2] Sharif Z, Sharif W. Corneal neovascularization: updates on pathophysiology, investigations & management[J]. Rom J Ophthalmol, 2019, 63(1):15-22.
[3] Mamikonyan VR, Pivin EA, Krakhmaleva DA. Mechanisms of corneal neovascularization and modern options for its suppression [J]. Vestn Oftalmol, 2016,132(4):81-87.
[4] Dekaris I1, Gabric' N, Dracˇa N, et al. Three-year corneal graft survival rate in high-risk cases treated with subconjunctival and topical bevacizumab[J]. Graefes Arch Clin Exp Opthalmol. 2015, 253(2):287-294.
[5] Roshandel D, Eslani M, Baradaran-Rafii A, et al. Current and emerging therapies for cornealneovascularization[J]. Ocul Surf, 2018,16(4): 398-414.
[6] Siham B, Nabil A, Houda A. Corneal neovascularization after chemical burn[J]. J Fr Ophtalmol, 2018,41(7):685.
[7] Giacomini C, Ferrari G, Bignami F, et al. Alkali burn versus suture-induced corneal neovascularization in C57BL/6 mice: an overview of two common animal models of corneal neovascularization[J]. Exp Eye Res, 2014, 121: 1-4.
[8] Geoffrey B. Overviews purinergic signalling: past, present and future[J]. Purinergic Signal, 2006, 2(1): 1-324.
[9] Voiculescu OB, Voinea LM, Alexandrescu C. Corneal neovascularization and biological therapy[J]. J Med Life,2015,8(4):444-448.
[10] Liu X, Wang S, Wang X, et al. Recent drug therapies for corneal neovascularization[J]. Chem Biol Drug Des, 2017, 90(5):653-664.
|