[1] Pearn ML, Hu Y, Niesman IR, et al. Propofol neurotoxicity is mediated by p75 neurotrophin receptor activation[J]. Anesthesiology, 2012, 116(2): 352-361.
[2] Ba eras J, Olivero C, Bosch M, et al. Therapeutic hypothermia, propofol, and high lactate: a suspicious combination [J]. Rev Esp Cardiol, 2018,71(9):760-762.
[3] Luo C, Ouyang MW, Fang YY, et al. Dexmedetomidine protects mouse brain from ischemia-refperfusion injury via inhibiting neuronal autophagy through up-regulating HIF-1α[J]. Front Cellular Neurosci, 2017, 11:197-201.
[4] Zhou C, Zhu Y, Liu Z, et al. Effects of dexmedetomidine on postoperative cognitive dysfunction in elderly patients undergoing general anesthesia: a meta-analysis [J]. J Int Med Res, 2016,44(6):1182-1190.
[5] Zhou J, Wang F, Zhang J, et al. The interplay of BDNF-TrkB with NMDA receptor in propofol-induced cognition dysfunction[J]. BMC Anesthesiol, 2018, 18(1):35.
[6] Lv J, Ou W, Zou XH, et al. Effect of dexmedetomidine on hippocampal neuron development and BDNF-TrkB signal expression in neonatal rats:[J]. Neuropsychiatr Dis Treat, 2016, 12:3153-3159.
[7] Yang B, Liang G, Khojasteh S, et al. Comparison of neurodegeneration and cognitive impairment in neonatal mice exposed to propofol or isoflurane [J]. PLoS One,2014,9(6):e99171.
[8] Wang J, Zhou M, Wang X, et al. Impact of ketamine on learning and memory function, neuronal apoptosis and its potential association with miR-214 and PTEN in adolescent rats[J]. PLoS One, 2014, 9(6):e99855.
[9] Mainetti M, Ascoli GA. A neural mechanism for background information-gated learning based on axonal-dendritic overlaps[J]. PLoS Comput Biol, 2015, 11(3):e1004155.
[10] Qian XL, Zhang W, Liu MZ, et al. Dexmedetomidine improves early postoperative cognitive dysfunction in aged mice [J]. Eur J Pharmacol, 2015, 746:206-212.
[11] Chen W, Liu B, Zhang F, et al. The effects of dexmedetomidine on post-operative cognitive dysfunction and inflammatory factors in senile patients [J]. Int J Clin Exp Med, 2015, 8(3):4601-4605.
[12] Xie X, Clausen OP, De Angelis P, et al. The prognostic value of spontaneous apoptosis, Bax, Bcl-2, and p53 in oral squamous cell carcinoma of the tongue [J]. Cancer, 2015, 86(6):913-920.
[13] Saegusa M, Takano Y, Hashimura M, et al. The possible role of Bcl-2 expression in the progression of tumors of the uterine cervix [J]. Cancer, 2015, 76(11):2297-2303.
[14] Zuckerman E, Zuckerman T, Sahar D, et al. Bcl-2 and immunoglobulin gene rearrangement in patients with hepatitis C virus infection[J]. Br J Haematol, 2015, 112(2):364-369.
[15] Sitarek P, Ska?a E, Toma M, et al. A preliminary study of apoptosis induction in glioma cells via alteration of the Bax/Bcl-2-p53 axis by transformed and non-transformed root extracts of Leonurus sibiricus, L[J]. Tumour Biol, 2016, 37(7):8753-8764.
[16] Qian XL, Zhang W, Liu MZ, et al. Dexmedetomidine improves early postoperative cognitive dysfunction in aged mice.[J]. Eur J Pharmacol, 2015, 746:206-212.
[17] Miranda ML, Balarini MM, Balthazar DS, et al. Ivabradine attenuates the microcirculatory derangements evoked by experimental sepsis [J]. Anesthesiology, 2017, 126(1):140-149.
[18] Djaiani G, Silverton N, Fedorko L, et al. Dexmedetomidine versus propofol sedation reduces delirium after cardiac surgery: a randomized controlled trial [J]. Anesthesiology, 2016,124(2):362-368.
[19] Chen P, Zhao M, Jiang P, et al. Effects of dexmedetomidine on myocardial expression of Bax and Bcl-2 in rat myocardial ischemia/reperfusion injury[J]. Chongqing Medicine, 2012, 41(16):1604-1606.
|