[1] Gaucher J, Reynoird N, Montellier E, et al. From meiosis to postmeiotic events: the secrets of histone disappearance [J]. FEBS J, 2010, 277(3): 599-604.
[2] Zhang K, Rajput SK, Wang S, et al. CHD1 regulates deposition of histone variant H3.3 during bovine early embryonic development [J]. Biol Reprod, 2016, 94(6): 140.
[3] Sailau ZK, Bogolyubov DS, Bogolyubova IO. Nuclear distribution of the chromatin-remodeling protein ATRX in mouse early embryogenesis [J]. Acta Histochem, 2017, 119(1): 18-25.
[4] Udugama M, Sanij E, Voon HPJ, et al. Ribosomal DNA copy loss and repeat instability in ATRX-mutated cancers [J]. Proc Nat Acad Sci USA, 2018, 115(18): 4737-4742.
[5] Ma Y, Buttitta L. Chromatin organization changes during the establishment and maintenance of the postmitotic state [J]. Epigenetics Chromatin, 2017, 10(1): 53.
[6] Penke TJR, McKay DJ, Strahl BD, et al. Functional redundancy of variant and canonical histone H3 lysine 9 modification in drosophila [J]. Genetics, 2018, 208(1): 229-244.
[7] Inoue A, Zhang Y. Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes [J]. Nat Struct Mol Biol, 2014, 21(7): 609-616.
[8] Jang CW, Shibata Y, Starmer J, et al. Histone H3.3 maintains genome integrity during mammalian development [J]. Genes Dev, 2015, 29(13): 1377-1392.
[9] Lin CJ, Conti M, Ramalho-Santos M. Histone variant H3.3 maintains a decondensed chromatin state essential for mouse preimplantation development [J]. Development, 2013, 140(17): 3624-3634.
[10]Holland A, Ohlendieck K. Comparative profiling of the sperm proteome [J]. Proteomics, 2015, 15(4): 632-648.
[11]Kong Q, Banaszynski LA, Geng F, et al. Histone variant H3.3-mediated chromatin remodeling is essential for paternal genome activation in mouse preimplantation embryos [J]. J Biol Chem, 2018, 293(10): 3829-3838.
[12]Inoue A, Ogushi S, Saitou M, et al. Involvement of mouse nucleoplasmin 2 in the decondensation of sperm chromatin after fertilization [J]. Biol Reprod, 2011, 85(1): 70-77.
[13]Soboleva TA, Nekrasov M, Pahwa A, et al. A unique H2A histone variant occupies the transcriptional start site of active genes [J]. Nat Struct Mol Biol, 2011, 19(1): 25-30.
[14]Yuen BT, Bush KM, Barrilleaux BL, et al. Histone H3-3 regulates dynamic chromatin states during spermatogenesis [J]. Development, 2014, 141(18): 3483-3494.
[15]Santenard A, Ziegler-Birling C, Koch M, et al. Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3 [J]. Nat Cell Biol, 2010, 12(9): 853-862.
[16]Teperek M, Miyamoto K. Nuclear reprogramming of sperm and somatic nuclei in eggs and oocytes [J]. Reprod Med Biol, 2013, 12: 133-149.
[17]de Rooij DG. Proliferation and differentiation of spermatogonial stem cells [J]. Reproduction, 2001, 121(3): 347-354.
[18]Bonnefoy E, Orsi GA, Couble P, et al. The essential role of drosophila HIRA for de novo assembly of paternal chromatin at fertilization [J]. PLoS Genet, 2007, 3(10): 1991-2006.
[19]Dyer MA, Qadeer ZA, Valle-Garcia D, et al. ATRX and DAXX: mechanisms and mutations [J]. Cold Spring Harb Perspect Med, 2017, 7(3).
[20]Filipescu D, Szenker E, Almouzni G. Developmental roles of histone H3 variants and their chaperones [J]. Trends Genet, 2013, 29(11): 630-640.
[21]Fang HT, El Farran CA, Xing QR, et al. Global H3.3 dynamic deposition defines its bimodal role in cell fate transition [J]. Nat commun, 2018, 9(1): 1537.
[22]Tardat M, Albert M, Kunzmann R, et al. Cbx2 targets PRC1 to constitutive heterochromatin in mouse zygotes in a parent-of-origin-dependent manner [J]. Mol Cell, 2015, 58(1): 157-171.
[23]Hazzouri M, Pivot-Pajot C, Faure AK, et al. Regulated hyperacetylation of core histones during mouse spermatogenesis: involvement of histone deacetylases [J]. Eur J Cell Biol, 2000, 79(12): 950-960.
[24]Zhou L, Baibakov B, Canagarajah B, et al. Genetic mosaics and time-lapse imaging identify functions of histone H3.3 residues in mouse oocytes and embryos [J]. Development, 2017, 144(3): 519-528.
[25]Wright SJ. Sperm nuclear activation during fertilization [J]. Curr Top Dev Biol, 1999, 46: 133-178.
[26]Lin CJ, Koh FM, Wong P, et al. Hira-mediated H3.3 incorporation is required for DNA replication and ribosomal RNA transcription in the mouse zygote [J]. Dev Cell, 2014, 30(3): 268-279.
[27]Nashun B, Hill PW, Smallwood SA, et al. Continuous histone replacement by hira is essential for normal transcriptional regulation and de novo DNA methylation during mouse oogenesis [J]. Mol Cell, 2015, 60(4): 611-625.
[28]Probst AV, Almouzni G. Heterochromatin establishment in the context of genome-wide epigenetic reprogramming [J]. Trends Genet, 2011, 27(5): 177-185.
[29]Oyama K, El-Nachef D, Fang C, et al. Deletion of HP1gamma in cardiac myocytes affects H4K20me3 levels but does not impact cardiac growth [J]. Epigenet Chromatin, 2018, 11(1): 18.
[30]Fulka H, Langerova A. The maternal nucleolus plays a key role in centromere satellite maintenance during the oocyte to embryo transition [J]. Development, 2014, 141(8): 1694-1704.
[31]Buschbeck M, Hake SB. Variants of core histones and their roles in cell fate decisions, development and cancer [J]. Nat Revi Mol Cell Biol, 2017, 18(5): 299-314.
[32]Rapkin LM, Ahmed K, Dulev S, et al. The histone chaperone DAXX maintains the structural organization of heterochromatin domains [J]. Epigenet Chromatin, 2015, 8: 44.
[33]Voon HP, Hughes JR, Rode C, et al. ATRX plays a key role in maintaining silencing at interstitial heterochromatic loci and imprinted genes [J]. Cell Reports, 2015, 11(3): 405-418.
[34]Szenker E, Ray-Gallet D, Almouzni G. The double face of the histone variant H3.3 [J]. Cell Res, 2011, 21(3): 421-434.
|