[1] Ilic M, Ilic I. Epidemiology of pancreatic cancer[J]. World J Gastroenterol,2016 22(44):9694-9705.
[2] Tando Y, Yanagimachi M, Matsuhashi Y, et al. A brief outline of the history of the pancreatic anatomy[J]. Dig Surg, 2010,27(2):84-86.
[3] So M, Bansal N, Piracha MM. Neuromodulation and pancreatic cancer pain[J]. J Palliat Med,2018,21(8): 1064-1066.
[4] Leung PS. Overview of the pancreas[J]. Adv Exp Med Biol,2010,690:3-12.
[5] Skandalakis LJ, Rowe JS Jr, Gray SW, et al. Surgical embryology and anatomy of the pancreas[J]. Surg Clin North Am, 1993,73(4):661-697.
[6] Hagai H. Configurational anatomy of the pancreas: its surgical relevance from ontogenetic and comparative-anatomical viewpoints[J]. J Hepatobiliary Pancreat Surg, 2003,10(1):48-56.
[7] Lindsay TH, Halvorson KG, Peters CM, et al. A quantitative analysis of the sensory and sympathetic innervation of the mouse pancreas[J]. Neuroscience, 2006,137(4):1417-1426.
[8] Nedergaard J, Alexson S, Cannon B. Cold adaptation in the rat: increased brown fat peroxisomal beta-oxidation relative to maximal mitochondrial oxidative capacity[J]. Am J Physiol,1980,239(5):C208-216.
[9] Rack FJ, Elkins CW. Experiences with vagotomy and sympathectomy in the treatment of chronic recurrent pancreatitis[J]. AMA Arch Surg,1950,61(5):937-943.
[10] Rodriguez-Diaz R, Abdulreda MH, Formoso AL, et al. Innervation patterns of autonomic axons in the human endocrine pancreas[J]. Cell Metab,2011,14(1):45-54.
[11] Henry BM, Skinningsrud B, Saganiak K, et al. Development of the human pancreas and its vasculature-An integrated review covering anatomical, embryological, histological, and molecular aspects[J]. Ann Anat,2019,221:115-124.
[12] Bonica JJ. Autonomic innervation of the viscera in relation to nerve block[J]. Anesthesiology,1968,29(4):793-813.
[13] Kato K, Ikeura T, Yanagawa M, et al. Morphological and immunohistochemical comparison of intrapancreatic nerves between chronic pancreatitis and type 1 autoimmune pancreatitis[J]. Pancreatology,2017,17(3):403-410.
[14] Gupta R, Amanam I, Chung V. Current and future therapies for advanced pancreatic cancer[J]. J Surg Oncol,2017,116(1):25-34.
[15] Bj?rnsson B, Sandstr?m P. Laparoscopic distal pancreatectomy for adenocarcinoma of the pancreas[J]. World J Gastroenterol,2014,20(37):13402-13411.
[16] Dobosz ? , Kaczor M, Stefaniak TJ. Pain in pancreatic cancer: review of medical and surgical remedies[J]. ANZ J Surg,2016,86(10):756-761.
[17] J?nig W. Neurobiology of visceral pain[J]. Schmerz,2014,28(3):233-251.
[18] Wang L, Xu H, Ge Y, et al. Establishment of a murine pancreatic cancer pain model and microarray analysis of painassociated genes in the spinal cord dorsal horn[J]. Mol Med Rep,2017,16(4):4429-4436.
[19] Gebhart GF, Bielefeldt K. Physiology of visceral pain[J]. Compr Physiol,2016,6(4):1609-1633.
[20] Carr RA, Roch AM, Zhong X, et al. Prospective evaluation of associations between cancer-related pain and perineural invasion in patients with resectable pancreatic adenocarcinoma[J]. J Gastrointest Surg,2017,21(10):1658-1665.
[21] Zhang Y. Molecular mechanism of moesin in pancreatic cancer and its correlation with pain[D]. Tianjin: Tianjin Medical University,2009. (in Chinese)
张彧. moesin在胰腺癌嗜神经性中的分子机制及与疼痛的相关性[D]. 天津:天津医科大学,2009.
[22] Liang L, Dong M, Cong K, et al. Correlations of moesin expression with the pathological stage, nerve infiltration, tumor location and pain severity in patients with pancreatic cancer[J]. J BUON,2019,24(3):1225-1232.
[23] Abiatari I, Esposito I, Oliveira TD, et al. Moesin-dependent cytoskeleton remodelling is associated with an anaplastic phenotype of pancreatic cancer[J]. J Cell Mol Med,2010,14(5):1166-1179.
[24] Bapat AA, Munoz RM, Von Hoff DD, et al. Blocking nerve growth factor signaling reduces the neural invasion potential of pancreatic cancer cells[J]. PLoS One,2016,11(10):e0165586.
[25] Jobling P, Pundavela J, Oliveira SM, et al. Nerve-cancer cell cross-talk: a novel promoter of tumor progression[J]. Cancer Res,2015,75(9):1777-1781.
[26] Boilly B, Faulkner S, Jobling P, et al. Nerve dependence: from regeneration to cancer[J]. Cancer Cell,2017,31(3):342-354.
[27] Longo V, Tamma R, Brunetti O, et al. Mast cells and angiogenesis in pancreatic ductal adenocarcinoma[J]. Clin Exp Med,2018,18(3):319-323.
[28] Yu DW. Study on the role and mechanism of mast cell departiculate matter in pancreatic cancer pain[D]. Shanghai: Second Military Medical University,2013. (in Chinese)
虞大为. 肥大细胞脱颗粒物在胰腺癌疼痛中的作用及其机制研究[D]. 上海:第二军医大学,2013.
[29] Guo X, Zhai L, Xue R, et al. Mast cell tryptase contributes to pancreatic cancer growth through promoting angiogenesis via activation of angiopoietin-1[J]. Int J Mol Sci,2016,17(6): 834.
[30] Hung CY, Tan CH. TRP channels in nociception and pathological pain[J]. Adv Exp Med Biol,2018,1099:13-27.
[31] Zhang MM. Mechanism of central transmission and regulation of pelvic visceral pain information[D]. Xi’an: Fourth Military Medical University,2014. (in Chinese)
张明明. 盆腔内脏痛信息在中枢传递与调控的机制[D]. 西安:第四军医大学,2014.
[32] Zhu J, Miao XR, Tao KM, et al. Trypsin-protease activated receptor-2 signaling contributes to pancreatic cancer pain[J]. Oncotarget,2017,8(37): 61810-61823.
[33] Amaya F, Shimosato G, Nagano M, et al. NGF and GDNF differentially regulate TRPV1 expression that contributes to development of inflammatory thermal hyperalgesia[J]. Eur J Neurosc,2004,20(9):2303-2310.
[34] Witte D, Zeeh F, G?deken T, et al. Proteinase-activated receptor 2 is a novel regulator of TGF-β signaling in pancreatic cancer[J]. J Clin Med,2016,5(12): 111.
[35] Xie L, Duan Z, Liu C, et al. Protease-activated receptor 2 agonist increases cell proliferation and invasion of human pancreatic cancer cells[J]. Exp Ther Med,2015,9(1):239-244.
[36] Yu D, Zhu J, Zhu M, et al. Inhibition of mast cell degranulation relieves visceral hypersensitivity induced by pancreatic carcinoma in mice[J]. J Mol Neurosci,2019,69(2):235-245.
[37] Barreto SG, Saccone GT. Pancreatic nociception-revisiting the physiology and pathophysiology[J]. Pancreatology,2012,12(2):104-112.
[38] Ceyhan GO, Michalski CW, Demir IE, et al. Pancreatic pain[J]. Best Pract Res Clin Gastroenterol,2008,22(1):31-44.
[39] Elliott AA, Elliott JR. Characterization of TTX-sensitive and TTX-resistant sodium currents in small cells from adult rat dorsal root ganglia[J]. J Physiol,1993,463:39.
[40] Lastraioli E, Iorio J, Arcangeli A. Ion channel expression as promising cancer biomarker [J]. Biochim Biophys Acta, 2015,1848(10pt B):2685-2702.
[41] Godazgar M, Zhang Q, Chibalina MV, et al. Biphasic voltage-dependent inactivation of human NaV 1.3, 1.6 and 1.7 Na+ channels expressed in rodent insulinsecreting cells[J]. J Physiol,2018,596(9):1601-1626.
[42] Berta T, Qadri Y, Tan PH, et al. Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain[J]. Expert Opin Ther Targets,2017,21(7):695-703.
[43] Tréhoux S, Lahdaoui F, Delpu Y, et al. Micro-RNAs miR-29a and miR-330-5p function as tumor suppressors by targeting the MUC1 mucin in pancreatic cancer cells[J]. Biochim Biophys Acta,2015,1853(10 Pt A):2392-2403.
[44] Wang LQ. Mechanism of mir-330 inhibiting GABAB receptor function in spinal cord neurons to mediate pancreatic cancer pain[D]. Shanghai: Second Military Medical University,2015. (in Chinese)
[45] Demir IE, Ceyhan GO, Rauch U, et al. The microenvironment in chronic pancreatitis and pancreatic cancer induces neuronal plasticity[J]. Neurogastroenterol Motil,2010,22(4):480-490.
[46] Demir IE, Friess H, Ceyhan GO. Neural plasticity in pancreatitis and pancreatic cancer[J]. Nat Rev Gastroenterol Hepatol,2015,12(11):649-659.
[47] Alrawashdeh W, Jones R, Dumartin L, et al. Perineural invasion in pancreatic cancer: proteomic analysis and in vitro modelling[J]. Mol Oncol,2019,13(5):1075-1091.
[48] Demir IE, Tieftrunk E, Schorn S, et al. Activated Schwann cells in pancreatic cancer are linked to analgesia via suppression of spinal astroglia and microglia[J]. Gut,2016,65(6):1001-1014.
[49] Costache MI, Ioana M, Iordache S, et al. VEGF expression in pancreatic cancer and other malignancies: a review of the literature[J]. Rom J Intern Med,2015,53(3):199-208.
[50] Abiatari I, Midelashvili T, Motsikulashvili M, et al. Overexpressed progenitor gene CSF1R in pancreatic cancer tissues and nerve invasive pancreatic cancer cells[J]. Georgian Med News,2018,(285):96-100.
[51] Bennett MI. Mechanism-based cancer-pain therapy[J]. Pain,2017,158 (Suppl 1):S74-S78.
[52] Mercadante S, Tirelli W, David F, et al. Morphine versus oxycodone in pancreatic cancer pain: a randomized controlled study[J]. Clin J Pain,2010,26(9):794-797.
[53] Rossi ML, Rehman AA, Gondi CS. Therapeutic options for the management of pancreatic cancer[J]. World J Gastroenterol,2014,20(32):11142-11159.
[54] Dobosz ?, Stefaniak T, Dobrzycka M, et al. Invasive treatment of pain associated with pancreatic cancer on different levels of WHO analgesic ladder[J]. BMC Surg,2016,16:20.
[55] Niu L, Wang Y, Yao F, et al. Alleviating visceral cancer pain in patients with pancreatic cancer using cryoablation and celiac plexus block[J]. Cryobiology,2013,66(2):105-111.
[56] Gupta R, Amanam I, Chung V. Current and future therapies for advanced pancreatic cancer[J]. J Surg Oncol,2017,116(1):25-34.
|