[1]Shuai L, Zhou Q. Haploid embryonic stem cells serve as a new tool for mammalian genetic study[J]. Stem Cell Res Ther, 2014, 5(1): 20.
[2]Shi L, Yang H, Li J. Haploid embryonic stem cells: an ideal tool for mammalian genetic analyses[J]. Protein Cell, 2012, 3(11): 806-810.
[3].Didie M, Christalla P, Rubart M, et al. Zimmermann, Parthenogenetic stem cells for tissue-engineered heart repair[J]. J Clin Invest, 2013, 123(3): 1285-1298.
[4]Fulka H, Hirose M, Inoue K, et a.Production of mouse embryonic stem cell lines from maturing oocytes by direct conversion of meiosis into mitosis[J]. Stem Cells, 2011, 29(3): 517-527.
[5]Daughtry B, Mitalipov S. Concise review: parthenote stem cells for regenerative medicine: genetic, epigenetic, and developmental features[J]. Stem Cells Transl Med, 2014, 3(3): 290-298.
[6]Wu Q, Kumagai T, Kawahara M, et al. Regulated expression of two sets of paternally imprinted genes is necessary for mouse parthenogenetic development to term[J]. Reproduction, 2006, 131(3): 481-488.
[7]Kono T, Sotomaru Y, Katsuzawa Y, et al. Mouse parthenogenetic embryos with monoallelic H19 expression can develop to day 175 of gestation[J]. Dev Biol, 2002, 243(2): 294-300.
[8]Kono T, Obata Y, Wu Q, et al. Birth of parthenogenetic mice that can develop to adulthood[J]. Nature, 2004, 428(6985): 860-864.
[9]Chen Z, Liu Z, Huang J, et al. Birth of parthenote mice directly from parthenogenetic embryonic stem cells[J]. Stem Cells, 2009, 27(9): 2136-2145.
[10]Eckardt S, Leu NA, Yanchik A, et al. Gene therapy by allele selection in a mouse model of beta-thalassemia[J]. J Clin Invest, 2011, 121(2): 623-627.
[11]Wang ZD, Xue Y, Shan ZY, et al. Generation of mouse parthenogenetic embryonic stem cells and preliminary study of the differentiation ability to motor neurons[J]. Yi Chuan, 2011, 33(11): 1231-1238.
[12]Yan X, Yang Y, Liu W, et al. Differentiation of neuron-like cells from mouse parthenogenetic embryonic stem cells[J]. Neural Regen Res, 2013 8(4): 293-300.
[13]Espejel S, Eckardt S, Harbell J, et al.Brief report: Parthenogenetic embryonic stem cells are an effective cell source for therapeutic liver repopulation[J]. Stem Cells, 2014, 32(7): 1983-1988.
[14]Kwak M, Hong S, Yu SL, et al. Parthenogenetic embryonic stem cells with H19 siRNAmediated knockdown as a potential resource for cell therapy[J]. Int J Mol Med, 2012, 29(2): 257-262.
[15]Wan H, He Z, Dong M, et al. Parthenogenetic haploid embryonic stem cells produce fertile mice[J]. Cell Res, 2013, 23(11): 1330-1333.
[16]Takahashi S, Lee J, Kohda T, et al. Induction of the G2/M transition stabilizes haploid embryonic stem cells[J]. Development, 2014, 141(20): 3842-3847.
[17]Hsieh YC, Intawicha P, Lee KH, et al. LIF and FGF cooperatively support stemness of rabbit embryonic stem cells derived from parthenogenetically activated embryos[J]. Cell Reprogram, 2011, 13(3): 241-255.
[18]Brevini TA, Pennarossa G, Attanasio L, et al. Culture conditions and signalling networks promoting the establishment of cell lines from parthenogenetic and biparental pig embryos[J]. Stem Cell Rev, 2010, 6(3): 484-495.
[19]Yang H, Liu Z, Ma Y, et al.Generation of haploid embryonic stem cells from Macaca fascicularis monkey parthenotes[J]. Cell Res, 2013, 23(10): 1187-1200.
[20]Li J, He J, Lin G, et al. Inducing human parthenogenetic embryonic stem cells into isletlike clusters[J]. Mol Med Rep, 2014, 10(6): 2882-2890.
[21]Gonzalez R, Garitaonandia I, Crain A, et al. Proof of concept studies exploring the safety and functional activity of human parthenogenetic-derived neural stem cells for the treatment of parkinson’s disease[J]. Cell Transplant, 2015, 24(4): 681-690.
[22]Maatouk DM, Resnick JL. Continuing primordial germ cell differentiation in the mouse embryo is a cell-intrinsic program sensitive to DNA methylation[J]. Dev Biol, 2003, 258(1): 201-208.
[23]MacDonald WA, Mann MR. Epigenetic regulation of genomic imprinting from germ line to preimplantation[J]. Mol Reprod Dev, 2014, 81(2): 126-140.
[24]Croteau S, Menezo Y. Methylation in fertilised and parthenogenetic preimplantation mouse embryos[J]. Zygote, 1994, 2(1): 47-52.
[25]Kelsey G, Feil R. New insights into establishment and maintenance of DNA methylation imprints in mammals[J]. Philos Trans R Soc Lond B Biol Sci, 2013, 368(1609): 20110336.
[26]Horii T, Kimura M, Morita S, et al. Loss of genomic imprinting in mouse parthenogenetic embryonic stem cells[J]. Stem Cells, 2008, 26(1): 79-88.
[27]Sotomaru Y, Kawase Y, Ueda T, et al. Disruption of imprinted expression of U2afbprs/U2af1rs1 gene in mouse parthenogenetic fetuses[J]. J Biol Chem, 2001, 276(28): 26694-26698.
[28]Hackett JA, Surani MA. DNA methylation dynamics during the mammalian life cycle[J]. Philos Trans R Soc Lond B Biol Sci, 2013, 368(1609): 20110328.
[29]Gong SP, Kim H, Lee EJ, et al. Change in gene expression of mouse embryonic stem cells derived from parthenogenetic activation[J]. Hum Reprod, 2009, 24(4): 805-814.[30]Liu L, Luo GZ, Yang W, et al. Activation of the imprinted Dlk1Dio3 region correlates with pluripotency levels of mouse stem cells[J]. J Biol Chem, 2010, 285(25): 19483-19490.
[31]Li W, Zhao XY, Wan HF, et al. iPS cells generated without c-Myc have active Dlk1-Dio3 region and are capable of producing full-term mice through tetraploid complementation[J]. Cell Res, 2011, 21(3): 550-553.
[32]Zeng TB, He HJ, Han ZB, et al. DNA methylation dynamics of a maternally methylated DMR in the mouse Dlk1-Dio3 domain[J]. FEBS Lett, 2014, 588(24): 4665-4671.
[33]Kota SK, Lleres D, Bouschet T, et al. ICR noncoding RNA expression controls imprinting and DNA replication at the Dlk1-Dio3 domain[J]. Dev Cell, 2014, 31(1): 19-33.
[34]Leeb M, Walker R, Mansfield B, et a. Germline potential of parthenogenetic haploid mouse embryonic stem cells[J]. Development, 2012, 139(18): 3301-3305.
[35]Hudson QJ, Kulinski TM, Huetter SP, et al. Genomic imprinting mechanisms in embryonic and extraembryonic mouse tissues[J]. Heredity (Edinb), 2010, 105(1): 45-56.
[36]Shan ZY, Wu YS, Shen XH, et al. Aggregation of pre-implantation embryos improves establishment of parthenogenetic stem cells and expression of imprinted genes[J]. Dev Growth Differ, 2012, 54(4): 481-488. |